This is a special edition of an established title widely used by colleges and universities throughout the world. Pearson published this exclusive edition for the benefit of students outside the United States and Canada. If you purchased this book within the United States or Canada you should be aware that it has been imported without the approval of the Publisher or Author.
Table of Contents

- Cover
- Title
- Copyright
- Preface to Seventh Edition
- List of Technology Briefs
- Contents
- List of Modules
- Photo Credits

Chapter 1: Introduction: Waves and Phasors

1-1 Historical Timeline
 1-1.1 EM in the Classical Era
 1-1.2 EM in the Modern Era

1-2 Dimensions, Units, and Notation

1-3 The Nature of Electromagnetism
 1-3.1 The Gravitational Force: A Useful Analogue
 1-3.2 Electric Fields
 1-3.3 Magnetic Fields
 1-3.4 Static and Dynamic Fields

1-4 Traveling Waves
 1-4.1 Sinusoidal Waves in a Lossless Medium

TB1 LED Lighting
 1-4.2 Sinusoidal Waves in a Lossy Medium

1-5 The Electromagnetic Spectrum

1-6 Review of Complex Numbers

1-7 Review of Phasors
 1-7.1 Solution Procedure

TB2 Solar Cells
 1-7.2 Traveling Waves in the Phasor Domain

Chapter 1 Summary

Problems

Chapter 2: Transmission Lines

2-1 General Considerations
 2-1.1 The Role of Wavelength
 2-1.2 Propagation Modes

2-2 Lumped-Element Model
Table of Contents

2-3 Transmission-Line Equations
2-4 Wave Propagation on a Transmission Line
2-5 The Lossless Microstrip Line
2-6 The Lossless Transmission Line: General Considerations
 2-6.1 Voltage Reflection Coefficient
 2-6.2 Standing Waves
2-7 Wave Impedance of the Lossless Line
2-8 Special Cases of the Lossless Line
 2-8.1 Short-Circuited Line
 2-8.2 Open-Circuited Line
 2-8.3 Application of Short-Circuit/Open-Circuit Technique
TB3 Microwave Ovens
 2-8.4 Lines of Length $l = n/2$
 2-8.5 Quarter-Wavelength Transformer
 2-8.6 Matched Transmission Line: $Z_L = Z_0$
2-9 Power Flow on a Lossless Transmission Line
 2-9.1 Instantaneous Power
 2-9.2 Time-Average Power
2-10 The Smith Chart
 2-10.1 Parametric Equations
 2-10.2 Wave Impedance
 2-10.3 SWR, Voltage Maxima and Minima
 2-10.4 Impedance to Admittance Transformations
2-11 Impedance Matching
 2-11.1 Lumped-Element Matching
 2-11.2 Single-Stub Matching
2-12 Transients on Transmission Lines
TB4 EM Cancer Zappers
 2-12.1 Transient Response
 2-12.2 Bounce Diagrams
Chapter 2 Summary
Problems

Chapter 3: Vector Analysis

3-1 Basic Laws of Vector Algebra
 3-1.1 Equality of Two Vectors
 3-1.2 Vector Addition and Subtraction
 3-1.3 Position and Distance Vectors
 3-1.4 Vector Multiplication
 3-1.5 Scalar and Vector Triple Products
3-2 Orthogonal Coordinate Systems
| 3-2.1 Cartesian Coordinates |
| 3-2.2 Cylindrical Coordinates |
| 3-2.3 Spherical Coordinates |
| 3-3 Transformations between Coordinate Systems |
| 3-3.1 Cartesian to Cylindrical Transformations |
| TB5 Global Positioning System |
| 3-3.2 Cartesian to Spherical Transformations |
| 3-3.3 Cylindrical to Spherical Transformations |
| 3-3.4 Distance between Two Points |
| 3-4 Gradient of a Scalar Field |
| 3-4.1 Gradient Operator in Cylindrical and Spherical Coordinates |
| 3-4.2 Properties of the Gradient Operator |
| 3-5 Divergence of a Vector Field |
| 3-6 Curl of a Vector Field |
| TB6 X-Ray Computed Tomography |
| 3-6.1 Vector Identities Involving the Curl |
| 3-6.2 Stokess Theorem |
| 3-7 Laplacian Operator |
| Chapter 3 Summary |
| Problems |

Chapter 4: Electrostatics

| 4-1 Maxwells Equations |
| 4-2 Charge and Current Distributions |
| 4-2.1 Charge Densities |
| 4-2.2 Current Density |
| 4-3 Coulombs Law |
| 4-3.1 Electric Field due to Multiple Point Charges |
| 4-3.2 Electric Field due to a Charge Distribution |
| 4-4 Gausss Law |
| 4-5 Electric Scalar Potential |
| 4-5.1 Electric Potential as a Function of Electric Field |
| 4-5.2 Electric Potential Due to Point Charges |
| 4-5.3 Electric Potential Due to Continuous Distributions |
| 4-5.4 Electric Field as a Function of Electric Potential |
| 4-5.5 Poissons Equation |
| 4-6 Conductors |
| TB7 Resistive Sensors |
| 4-6.1 Drift Velocity |
| 4-6.2 Resistance |
| 4-6.3 Joules Law |
Table of Contents

4-7 Dielectrics
 4-7.1 Polarization Field
 4-7.2 Dielectric Breakdown

4-8 Electric Boundary Conditions
 4-8.1 Dielectric-Conductor Boundary
 4-8.2 Conductor-Conductor Boundary

4-9 Capacitance

4-10 Electrostatic Potential Energy

TB8 Supercapacitors as Batteries

TB9 Capacitive Sensors

4-11 Image Method
 Chapter 4 Summary
 Problems

Chapter 5: Magnetostatics

5-1 Magnetic Forces and Torques
 5-1.1 Magnetic Force on a Current-Carrying Conductor
 5-1.2 Magnetic Torque on a Current-Carrying Loop

5-2 The Biot-Savart Law
 5-2.1 Magnetic Field due to Surface and Volume Current Distributions
 5-2.2 Magnetic Field of a Magnetic Dipole
 5-2.3 Magnetic Force Between Two Parallel Conductors

5-3 Maxwell's Magnetostatic Equations
 5-3.1 Gauss's Law for Magnetism
 5-3.2 Ampère's Law

TB10 Electromagnets

5-4 Vector Magnetic Potential

5-5 Magnetic Properties of Materials
 5-5.1 Electron Orbital and Spin Magnetic Moments
 5-5.2 Magnetic Permeability
 5-5.3 Magnetic Hysteresis of Ferromagnetic Materials

5-6 Magnetic Boundary Conditions

5-7 Inductance
 5-7.1 Magnetic Field in a Solenoid
 5-7.2 Self-Inductance

TB11 Inductive Sensors
 5-7.3 Mutual Inductance

5-8 Magnetic Energy
 Chapter 5 Summary
 Problems

Chapter 6 Maxwell's Equations for Time-Varying Fields
Table of Contents

6-1 Faradays Law
6-2 Stationary Loop in a Time-Varying Magnetic Field
6-3 The Ideal Transformer
6-4 Moving Conductor in a Static Magnetic Field
TB12 EMF Sensors
6-5 The Electromagnetic Generator
6-6 Moving Conductor in a Time-Varying Magnetic Field
6-7 Displacement Current
6-8 Boundary Conditions for Electromagnetics
6-9 Charge-Current Continuity Relation
6-10 Free-Charge Dissipation in a Conductor
6-11 Electromagnetic Potentials
 6-11.1 Retarded Potentials
 6-11.2 Time-Harmonic Potentials
 Chapter 6 Summary
 Problems

Chapter 7: Plane-Wave Propagation

7-1 Time-Harmonic Fields
 7-1.1 Complex Permittivity
 7-1.2 Wave Equations

7-2 Plane-Wave Propagation in Lossless Media
 7-2.1 Uniform Plane Waves
 7-2.2 General Relation Between E and H

TB13 RFID Systems

7-3 Wave Polarization
 7-3.1 Linear Polarization
 7-3.2 Circular Polarization
 7-3.3 Elliptical Polarization

7-4 Plane-Wave Propagation in Lossy Media
 7-4.1 Low-Loss Dielectric
 7-4.2 Good Conductor

TB14 Liquid Crystal Display (LCD)

7-5 Current Flow in a Good Conductor

7-6 Electromagnetic Power Density
 7-6.1 Plane Wave in a Lossless Medium
 7-6.2 Plane Wave in a Lossy Medium
 7-6.3 Decibel Scale for Power Ratios
 Chapter 7 Summary
 Problems
Table of Contents

Chapter 8: Wave Reflection and Transmission
 8-1 Wave Reflection and Transmission at Normal Incidence
 8-1.1 Boundary between Lossless Media
 8-1.2 Transmission-Line Analogue
 8-1.3 Power Flow in Lossless Media
 8-1.4 Boundary between Lossy Media
 8-2 Snells Laws
 8-3 Fiber Optics
 8-4 Wave Reflection and Transmission at Oblique Incidence
 TB15 Lasers
 8-4.1 Perpendicular Polarization
 8-4.2 Parallel Polarization
 8-4.3 Brewster Angle
 8-5 Reflectivity and Transmissivity
 8-6 Waveguides
 TB16 Bar-Code Readers
 8-7 General Relations for E and H
 8-8 TM Modes in Rectangular Waveguide
 8-9 TE Modes in Rectangular Waveguide
 8-10 Propagation Velocities
 8-11 Cavity Resonators
 8-11.1 Resonant Frequency
 8-11.2 Quality Factor
 Chapter 8 Summary
 Problems

Chapter 9: Radiation and Antennas
 9-1 The Hertzian Dipole
 9-1.1 Far-Field Approximation
 9-1.2 Power Density
 9-2 Antenna Radiation Characteristics
 9-2.1 Antenna Pattern
 9-2.2 Beam Dimensions
 9-2.3 Antenna Directivity
 9-2.4 Antenna Gain
 9-2.5 Radiation Resistance
 9-3 Half-Wave Dipole Antenna
 9-3.1 Directivity of /2 Dipole
 9-3.2 Radiation Resistance of /2 Dipole
 9-3.3 Quarter-Wave Monopole Antenna
Table of Contents

9-4 Dipole of Arbitrary Length
9-5 Effective Area of a Receiving Antenna
TB17 Health Risks of EM Fields
9-6 Friis Transmission Formula
9-7 Radiation by Large-Aperture Antennas
9-8 Rectangular Aperture with Uniform Aperture Distribution
 9-8.1 Beamwidth
 9-8.2 Directivity and Effective Area
9-9 Antenna Arrays
9-10 N-Element Array with Uniform Phase Distribution
9-11 Electronic Scanning of Arrays
 9-11.1 Uniform-Amplitude Excitation
 9-11.2 Array Feeding
Chapter 9 Summary
Problems

Chapter 10: Satellite Communication Systems and Radar Sensors
10-1 Satellite Communication Systems
10-2 Satellite Transponders
10-3 Communication-Link Power Budget
10-4 Antenna Beams
10-5 Radar Sensors
 10-5.1 Basic Operation of a Radar System
 10-5.2 Unambiguous Range
 10-5.3 Range and Angular Resolutions
10-6 Target Detection
10-7 Doppler Radar
10-8 Monopulse Radar
 Chapter 10 Summary
 Problems

Appendix A: Symbols, Quantities, Units, and Abbreviations
Appendix B: Material Constants of Some Common Materials
Appendix C: Mathematical Formulas
Appendix D: Answers to Selected Problems
Bibliography
Index
 A
 B
 C