Digital Control System Analysis and Design

FOURTH EDITION

Charles L. Phillips • H. Troy Nagle • Aranya Chakrabortty
Digital Control System Analysis & Design, Global Edition

Table of Contents

Cover
Dedication
Contents
Preface

Chapter 1: Introduction

1.1 Overview
1.2 Digital Control System
1.3 The Control Problem
1.4 Satellite Model
1.5 Servomotor System Model
 - Antenna Pointing System
 - Robotic Control System
1.6 Temperature Control System
1.7 Single-Machine Infinite Bus Power System
1.8 Summary
References
Problems

Chapter 2: Discrete-Time Systems and the z-Transform

2.1 Introduction
2.2 Discrete-Time Systems
2.3 Transform Methods
2.4 Properties of the z-Transform
 - Addition and Subtraction
 - Multiplication by a Constant
 - Real Translation
 - Complex Translation
 - Initial Value
 - Final Value
2.5 Finding z-Transforms
2.6 Solution of Difference Equations
2.7 The Inverse z-Transform
 - Power Series Method
 - Partial-Fraction Expansion Method
 - Inversion-Formula Method
 - Discrete Convolution
Table of Contents

2.8 Simulation Diagrams and Flow Graphs
2.9 State Variables
2.10 Other State-Variable Formulations
2.11 Transfer Functions
2.12 Solutions of the State Equations
 - Recursive Solution
 - z-Transform Method
 - Numerical Method via Digital Computer
 - Properties of the State Transition Matrix
2.13 Linear Time-Varying Systems
2.14 Summary
References and Further Readings
Problems

Chapter 3: Sampling and Reconstruction
 3.1 Introduction
 3.2 Sampled-Data Control Systems
 3.3 The Ideal Sampler
 3.4 Evaluation of $E^*(s)$
 3.5 Results from the Fourier Transform
 3.6 Properties of $E^*(s)$
 3.7 Data Reconstruction
 - Zero-Order Hold
 - First-Order Hold
 - Fractional-Order Holds
 3.8 Summary
References and Further Readings
Problems

Chapter 4: Open-Loop Discrete-Time Systems
 4.1 Introduction
 4.2 The Relationship Between $E(z)$ and $E^*(s)$
 4.3 The Pulse Transfer Function
 4.4 Open-Loop Systems Containing Digital Filters
 4.5 The Modified z-Transform
 4.6 Systems with Time Delays
 4.7 Nonsynchronous Sampling
 4.8 State-Variable Models
 4.9 Review of Continuous-Time State Variables
 4.10 Discrete-Time State Equations
Table of Contents

4.11 Practical Calculations
4.12 Summary
References and Further Readings
Problems

Chapter 5: Closed-Loop Systems
5.1 Introduction
5.2 Preliminary Concepts
5.3 Derivation Procedure
5.4 State-Variable Models
5.5 Summary
References and Further Readings
Problems

Chapter 6: System Time-Response Characteristics
6.1 Introduction
6.2 System Time Response
6.3 System Characteristic Equation
6.4 Mapping the s-Plane into the z-Plane
6.5 Steady-State Accuracy
6.6 Simulation
6.7 Control Software
6.8 Summary
References and Further Readings
Problems

Chapter 7: Stability Analysis Techniques
7.1 Introduction
7.2 Stability
7.3 Bilinear Transformation
7.4 The Routh-Hurwitz Criterion
7.5 Jury's Stability Test
7.6 Root Locus
7.7 The Nyquist Criterion
7.8 The Bode Diagram
7.9 Interpretation of the Frequency Response
7.10 Closed-Loop Frequency Response
7.11 Summary
References and Further Readings
Problems
Table of Contents

Chapter 8: Digital Controller Design
- 8.1 Introduction
- 8.2 Control System Specifications
 - Steady-State Accuracy
 - Transient Response
 - Relative Stability
 - Sensitivity
 - Disturbance Rejection
 - Control Effort
- 8.3 Compensation
- 8.4 Phase-Lag Compensation
- 8.5 Phase-Lead Compensation
- 8.6 Phase-Lead Design Procedure
- 8.7 Lag-Lead Compensation
- 8.8 Integration and Differentiation Filters
- 8.9 PID Controllers
- 8.10 PID Controller Design
- 8.11 Design by Root Locus
- 8.12 Summary
 - References and Further Readings
 - Problems

Chapter 9: Pole-Assignment Design and State Estimation
- 9.1 Introduction
- 9.2 Pole Assignment
- 9.3 State Estimation
 - Observer Model
 - Errors in Estimation
 - Error Dynamics
 - Controller Transfer Function
 - Closed-Loop Characteristic Equation
 - Closed-Loop State Equations
- 9.4 Reduced-Order Observers
- 9.5 Current Observers
- 9.6 Controllability and Observability
- 9.7 Systems with Inputs
- 9.8 Summary
 - References and Further Readings
 - Problems

Chapter 10: System Identification of Discrete-Time Systems
Table of Contents

10.1 Introduction
10.2 Identification of Static Systems
10.3 Identification of Dynamic Systems
10.4 Black-Box Identification
10.5 Least-Squares System Identification
10.6 Estimating Transfer Functions with Partly Known Poles and Zeros
10.7 Recursive Least-Squares System Identification
10.8 Practical Factors for Identification
 - Choice of Input
 - Choice of Sampling Frequency
 - Choice of Signal Scaling
10.9 Summary
References and Further Readings
Problems

Chapter 11: Linear Quadratic Optimal Control
11.1 Introduction
11.2 The Quadratic Cost Function
11.3 The Principle of Optimality
11.4 Linear Quadratic Optimal Control
11.5 The Minimum Principle
11.6 Steady-State Optimal Control
11.7 Optimal State Estimation Kalman Filters
11.8 Least-Squares Minimization
11.9 Summary
References and Further Readings
Problems

Chapter 12: Case Studies
12.1 Introduction
12.2 Servomotor System
 - System Model
 - Design
12.3 Environmental Chamber Control System
 - Temperature Control System
12.4 Aircraft Landing System
 - Plant Model
 - Design
12.5 Neonatal Fractional Inspired Oxygen
 - Plant Transfer Function
Table of Contents

Taubes PID Controller
MATLAB pidtool PIDF Controllers
12.6 Topology Identification in Electric Power System Models
References

Appendix

Appendix I: Design Equations
Appendix II: Masons Gain Formula
References
Appendix III: Evaluation of E*(s)
References
Appendix IV: Review of Matrices
 Algebra of Matrices
 Other Relationships
 References
Appendix V: The Laplace Transform
 Introduction
 Properties of the Laplace Transform
 Differential Equations and Transfer Functions
 References
 Problems

Appendix VI: z-Transform Tables

Index