Digital Control System Analysis & Design, Global Edition

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover</td>
<td></td>
</tr>
<tr>
<td>Dedication</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td></td>
</tr>
<tr>
<td>Preface</td>
<td></td>
</tr>
<tr>
<td>Chapter 1: Introduction</td>
<td></td>
</tr>
<tr>
<td>1.1 Overview</td>
<td></td>
</tr>
<tr>
<td>1.2 Digital Control System</td>
<td></td>
</tr>
<tr>
<td>1.3 The Control Problem</td>
<td></td>
</tr>
<tr>
<td>1.4 Satellite Model</td>
<td></td>
</tr>
<tr>
<td>1.5 Servomotor System Model</td>
<td></td>
</tr>
<tr>
<td>Antenna Pointing System</td>
<td></td>
</tr>
<tr>
<td>Robotic Control System</td>
<td></td>
</tr>
<tr>
<td>1.6 Temperature Control System</td>
<td></td>
</tr>
<tr>
<td>1.7 Single-Machine Infinite Bus Power System</td>
<td></td>
</tr>
<tr>
<td>1.8 Summary</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td></td>
</tr>
<tr>
<td>Problems</td>
<td></td>
</tr>
<tr>
<td>Chapter 2: Discrete-Time Systems and the z-Transform</td>
<td></td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td></td>
</tr>
<tr>
<td>2.2 Discrete-Time Systems</td>
<td></td>
</tr>
<tr>
<td>2.3 Transform Methods</td>
<td></td>
</tr>
<tr>
<td>2.4 Properties of the z-Transform</td>
<td></td>
</tr>
<tr>
<td>Addition and Subtraction</td>
<td></td>
</tr>
<tr>
<td>Multiplication by a Constant</td>
<td></td>
</tr>
<tr>
<td>Real Translation</td>
<td></td>
</tr>
<tr>
<td>Complex Translation</td>
<td></td>
</tr>
<tr>
<td>Initial Value</td>
<td></td>
</tr>
<tr>
<td>Final Value</td>
<td></td>
</tr>
<tr>
<td>2.5 Finding z-Transforms</td>
<td></td>
</tr>
<tr>
<td>2.6 Solution of Difference Equations</td>
<td></td>
</tr>
<tr>
<td>2.7 The Inverse z-Transform</td>
<td></td>
</tr>
<tr>
<td>Power Series Method</td>
<td></td>
</tr>
<tr>
<td>Partial-Fraction Expansion Method</td>
<td></td>
</tr>
<tr>
<td>Inversion-Formula Method</td>
<td></td>
</tr>
<tr>
<td>Discrete Convolution</td>
<td></td>
</tr>
</tbody>
</table>
Table of Contents

2.8 Simulation Diagrams and Flow Graphs
2.9 State Variables
2.10 Other State-Variable Formulations
2.11 Transfer Functions
2.12 Solutions of the State Equations
 Recursive Solution
 z-Transform Method
 Numerical Method via Digital Computer
 Properties of the State Transition Matrix
2.13 Linear Time-Varying Systems
2.14 Summary
References and Further Readings
Problems

Chapter 3: Sampling and Reconstruction
3.1 Introduction
3.2 Sampled-Data Control Systems
3.3 The Ideal Sampler
3.4 Evaluation of E*(s)
3.5 Results from the Fourier Transform
3.6 Properties of E*(s)
3.7 Data Reconstruction
 Zero-Order Hold
 First-Order Hold
 Fractional-Order Holds
3.8 Summary
References and Further Readings
Problems

Chapter 4: Open-Loop Discrete-Time Systems
4.1 Introduction
4.2 The Relationship Between E(z) and E*(s)
4.3 The Pulse Transfer Function
4.4 Open-Loop Systems Containing Digital Filters
4.5 The Modified z-Transform
4.6 Systems with Time Delays
4.7 Nonsynchronous Sampling
4.8 State-Variable Models
4.9 Review of Continuous-Time State Variables
4.10 Discrete-Time State Equations
Table of Contents

4.11 Practical Calculations
4.12 Summary
References and Further Readings
Problems

Chapter 5: Closed-Loop Systems
 5.1 Introduction
 5.2 Preliminary Concepts
 5.3 Derivation Procedure
 5.4 State-Variable Models
 5.5 Summary
 References and Further Readings
 Problems

Chapter 6: System Time-Response Characteristics
 6.1 Introduction
 6.2 System Time Response
 6.3 System Characteristic Equation
 6.4 Mapping the s-Plane into the z-Plane
 6.5 Steady-State Accuracy
 6.6 Simulation
 6.7 Control Software
 6.8 Summary
 References and Further Readings
 Problems

Chapter 7: Stability Analysis Techniques
 7.1 Introduction
 7.2 Stability
 7.3 Bilinear Transformation
 7.4 The Routh-Hurwitz Criterion
 7.5 Jury's Stability Test
 7.6 Root Locus
 7.7 The Nyquist Criterion
 7.8 The Bode Diagram
 7.9 Interpretation of the Frequency Response
 7.10 Closed-Loop Frequency Response
 7.11 Summary
 References and Further Readings
 Problems
Table of Contents

Chapter 8: Digital Controller Design
 8.1 Introduction
 8.2 Control System Specifications
 Steady-State Accuracy
 Transient Response
 Relative Stability
 Sensitivity
 Disturbance Rejection
 Control Effort
 8.3 Compensation
 8.4 Phase-Lag Compensation
 8.5 Phase-Lead Compensation
 8.6 Phase-Lead Design Procedure
 8.7 Lag-Lead Compensation
 8.8 Integration and Differentiation Filters
 8.9 PID Controllers
 8.10 PID Controller Design
 8.11 Design by Root Locus
 8.12 Summary
 References and Further Readings
 Problems

Chapter 9: Pole-Assignment Design and State Estimation
 9.1 Introduction
 9.2 Pole Assignment
 9.3 State Estimation
 Observer Model
 Errors in Estimation
 Error Dynamics
 Controller Transfer Function
 Closed-Loop Characteristic Equation
 Closed-Loop State Equations
 9.4 Reduced-Order Observers
 9.5 Current Observers
 9.6 Controllability and Observability
 9.7 Systems with Inputs
 9.8 Summary
 References and Further Readings
 Problems

Chapter 10: System Identification of Discrete-Time Systems
Table of Contents

10.1 Introduction
10.2 Identification of Static Systems
10.3 Identification of Dynamic Systems
10.4 Black-Box Identification
10.5 Least-Squares System Identification
10.6 Estimating Transfer Functions with Partly Known Poles and Zeros
10.7 Recursive Least-Squares System Identification
10.8 Practical Factors for Identification
 Choice of Input
 Choice of Sampling Frequency
 Choice of Signal Scaling
10.9 Summary
References and Further Readings
Problems

Chapter 11: Linear Quadratic Optimal Control
11.1 Introduction
11.2 The Quadratic Cost Function
11.3 The Principle of Optimality
11.4 Linear Quadratic Optimal Control
11.5 The Minimum Principle
11.6 Steady-State Optimal Control
11.7 Optimal State Estimation Kalman Filters
11.8 Least-Squares Minimization
11.9 Summary
References and Further Readings
Problems

Chapter 12: Case Studies
12.1 Introduction
12.2 Servomotor System
 System Model
 Design
12.3 Environmental Chamber Control System
 Temperature Control System
12.4 Aircraft Landing System
 Plant Model
 Design
12.5 Neonatal Fractional Inspired Oxygen
 Plant Transfer Function
Table of Contents

Taubes PID Controller
MATLAB pidtool PIDF Controllers
12.6 Topology Identification in Electric Power System Models
References
Appendix
 Appendix I: Design Equations
 Appendix II: Masons Gain Formula
 References
 Appendix III: Evaluation of E*(s)
 References
 Appendix IV: Review of Matrices
 Algebra of Matrices
 Other Relationships
 References
 Appendix V: The Laplace Transform
 Introduction
 Properties of the Laplace Transform
 Differential Equations and Transfer Functions
 References
 Problems
 Appendix VI: z-Transform Tables
Index