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396 PART II  ✦   Generalized Regression Model and Equation Systems

With this formulation, all of the parameters are identified. This is an example of an exactly 
identified model. An additional variation is worth a look. Suppose that a second variable, w 
(weather), appears in the supply equation,

 q = a0 + a1p + a2x + e1,

 q = b0 + b1p + b2z + b3w + e2.

You can easily verify that, the reduced form matrix is the same as the previous one, save 
for an additional row that contains [a1b3/Λ, b3/Λ]. This implies that there is now a second 
solution for a1, p41/p42. The two solutions, this and p31/p32, will be different. This model is 
overidentified. There is more information in the sample and theory than is needed to deduce 
the structural parameters.

Some equation systems are identified and others are not. The formal mathematical 
conditions under which an equation in a system is identified turns on two results known 
as the rank and order conditions. The order condition is a simple counting rule. It 
requires that the number of exogenous variables that appear elsewhere in the equation 
system must be at least as large as the number of endogenous variables in the equation. 
(Other specific restrictions on the parameters will be included in this count—note that 
an “exclusion restriction” is a type of linear restriction.) We used this rule when we 
constructed the IV estimator in Chapter 8. In that setting, we required our model to be 
at least identified by requiring that the number of instrumental variables not contained 
in X be at least as large as the number of endogenous variables. The correspondence 
of that single equation application with the condition defined here is that the rest 
of the equation system is the source of the instrumental variables. One simple order 
condition for identification of an equation system is that each equation contain “its own” 
exogenous variable that does not appear elsewhere in the system.

The order condition is necessary for identification; the rank condition is sufficient. 
The equation system in (10-37) in structural form is y′� = -x′B + E′. The reduced 
form is y′ = x′(-B �-1) + E′�-1

= x′� + v′. The way we are going to deduce the 
parameters in (�, B, �) is from the reduced form parameters (�, �). For the jth 
equation, the solution is contained in ��j = -Bj, where �j contains all the coefficients 
in the jth equation that multiply endogenous variables. One of these coefficients will 
equal one, usually some will equal zero, and the remainder are the nonzero coefficients 
on endogenous variables in the equation, Yj [these are denoted gj in (10-41) following]. 
Likewise, Bj contains the coefficients in equation j on all exogenous variables in the 
model—some of these will be zero and the remainder will multiply variables in Xj, 
the exogenous variables that appear in this equation [these are denoted Bj in (10-
41) following]. The empirical counterpart will be Pcj = bj, where P is the estimated 
reduced form, (X′X)-1X′Y, and cj and bj will be the estimates of the jth columns of � 
and B. The rank condition ensures that there is a solution to this set of equations. In 
practical terms, the rank condition is difficult to establish in large equation systems. 
Practitioners typically take it as a given. In small systems, such as the two-equation 
systems that dominate contemporary research, it is trivial, as we examine in the next 
example. We have already used the rank condition in Chapter 8, where it played a 
role in the relevance condition for instrumental variable estimation. In particular, 
note after the statement of the assumptions for instrumental variable estimation, we 
assumed plim(1/T)Z′X is a matrix with rank K. (This condition is often labeled the 
rank condition in contemporary applications. It not identical, but it is sufficient for the 
condition mentioned here.)
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Example 10.7  The Rank Condition and a Two-Equation Model
The following two-equation recursive model provides what is arguably the platform for much 
of contemporary econometric analysis. The main equation of interest is

y = gf + bx + e.

The variable f is endogenous (it is correlated with e.); x is exogenous (it is uncorrelated with e).  
The analyst has in hand an instrument for f, z. The instrument, z, is relevant, in that in the 
auxiliary equation,

f = lx + dz + w,

d is not zero. The exogeneity assumption is E[ez] = E[wz] = 0. Note that the source of the 
endogeneity of f is the assumed correlation of w and e. For purposes of the exercise, assume 
that E[xz] = 0 and the data satisfy x′z = 0—this actually loses no generality. In this two-
equation model, the second equation is already in reduced form; x and z are both exogenous. 
It follows that l and d are estimable by least squares. The estimating equations for (g, b) are

PG1 = Jx′x x′z

z′x z′z
R -1Jx′y x′f

z′y z′f
R ¢ 1

-g
≤ = Jx′y/x′x x′f/x′x

z′y/z′z z′f/z′z
R ¢ 1

-g
≤ = Bj = ¢b

0
≤.

The solutions are g = (z′y/z′f) and b = (x′y/x′x - (z′y/z′f)x′f/x′x). Because x′x cannot 
equal zero, the solution depends on (z′f/z′z) not equal to zero—formally that this part of the 
reduced form coefficient matrix have rank M = 1, which would be the rank condition. Note 
that the solution for g is the instrumental variable estimator, with z as instrument for f. (The 
simplicity of this solution turns on the assumption that x′z = 0. The algebra gets a bit more 
complicated without it, but the conclusion is the same.)

The rank condition is based on the exclusion restrictions in the model—whether the 
exclusion restrictions provide enough information to identify the coefficients in the jth equation. 
Formally, the idea can be developed thusly. With the jth equation written as in (10-41), we 
call Xj the included exogenous variables. The remaining excluded exogenous variables are 
denoted Xj

*. The Mj variables Yj in (10-41) are the included endogenous variables. With this 

distinction, we can write the Mj reduced forms for Yj as �j = J�j

�j
*
R . The rank condition (which 

we state without proof) is that the rank of the lower part of the Mj * (Kj + K j
*) matrix, �j, equal 

Mj. In the preceding example, in the first equation, Yj is f, Mj = 1, Xj is x, Xj
* is z, and �j is 

estimated by the regression of f on x and z; �j is the coefficient on x and �j
* is the coefficient 

on z. The rank condition we noted earlier is that what is estimated by z′f/z′z, which would 
correspond to �j

* not equal zero, meaning that it has rank 1.
Casual statements of the rank condition based on an IV regression of a variable yIV 

on (Mj + Kj) endogenous and exogeneous variables in XIV, using Kj + K j
* exogenous and 

instrumental variables in ZIV (in the most familiar cases, Mj = K j
* = 1), state that the rank 

requirement is that (ZIV′XIV/T) be nonsingular. In the notation we are using here, ZIV would 
be X = (Xj, Xj

*) and Xiv would be (Xj, Yj). This nonsingularity would correspond to full rank 
of plim(X′X/T) times plim[(X′X*/T,X′Yj/T)] because plim(X′X/T) = Q, which is nonsingular 
[see (10-40)]. The first Kj columns of this matrix are the last Kj columns of an identity matrix, 
which have rank Kj. The last Mj columns are estimates of Q�j, which we require to have rank 
Mj, so the requirement is that �j have rank Mj. But, if K j

* Ú Mj (the order condition), then all 
that is needed is rank(�j

*) = Mj, so, in practical terms, the casual statement is correct. It is 
stronger than necessary; the formal mathematical condition is only that the lower half of the 
matrix must have rank Mj, but the practical result is much easier to visualize.

It is also easy to verify that the rank condition requires that the predictions of Yj using 
(Xj, Xj

*)�j be linearly independent. Continuing this line of thinking, if we use 2SLS, the rank 
condition requires that the predicted values of the included endogenous variables not be 
collinear, which makes sense.
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10.4.4  SINGLE EQUATION ESTIMATION AND INFERENCE

For purposes of estimation and inference, we write the model in the way that the 
researcher would typically formulate it,

 yj = XjBj + YjGj + Ej

  = ZjDj + Ej,  
(10-41)

where yj is the “dependent variable” in the equation, Xj is the set of exogenous variables 
that appear in the jth equation—note that this is not all the variables in the model—and 
Zj = (Xj, Yj). The full set of exogenous variables in the model, including Xj and variables 
that appear elsewhere in the model (including a constant term if any equation includes 
one), is denoted X. For example, in the supply/demand model in Example 10.6, the full 
set of exogenous variables is X = (1, x, z), while XDemand = (1, x) and XSupply = (1, z). 
Finally, Yj is the endogenous variables that appear on the right-hand side of the jth 
equation. Once again, this is likely to be a subset of the endogenous variables in the full 
model. In Example 10.6, Yj = (price) in both cases.

There are two approaches to estimation and inference for simultaneous equations 
models. Limited information estimators are constructed for each equation individually. 
The approach is analogous to estimation of the seemingly unrelated regressions model 
in Section 10.2 by least squares, one equation at a time. Full information estimators 
are used to estimate all equations simultaneously. The counterpart for the seemingly 
unrelated regressions model is the feasible generalized least squares estimator 
discussed in Section 10.2.3. The major difference to be accommodated at this point is 
the endogeneity of Yj in (10-41).

The equation in (10-41) is precisely the model developed in Chapter 8. Least squares 
will generally be unsuitable as it is inconsistent due to the correlation between Yj and Ej. The 
usual approach will be two-stage least squares as developed in Sections 8.3.2 through 8.3.4. 
The only difference between the case considered here and that in Chapter 8 is the source of 
the instrumental variables. In our general model in Chapter 8, the source of the instruments 
remained somewhat ambiguous; the overall rule was “outside the model.” In this setting, 
the instruments come from elsewhere in the model—that is, “not in the jth equation.” For 
estimating the linear simultaneous equations model, the most common estimator is

 Dnj, 2 SLS = [Zn j
=Zn j]

-1Zn j
=yj

  = [(Zj
=X)(X′X)-1(X′Zj)]-1(Zj

=X)(X′X)-1X′yj, 
(10-42)

where all columns of Zn j
= are obtained as predictions in a regression of the corresponding 

column of Zj on X. This equation also results in a useful simplification of the estimated 
asymptotic covariance matrix,

Est.Asy.Var[Dnj, 2 SLS] = snjj(Zn j
=Zn j)

-1.

It is important to note that sjj is estimated by

 snjj =

(yj - ZjD
n

j)′(yj - ZjD
n

j)

T
, (10-43)

using the original data, not Zn j.
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Note the role of the order condition for identification in the two-stage least squares 
estimator. Formally, the order condition requires that the number of exogenous variables 
that appear elsewhere in the model (not in this equation) be at least as large as the 
number of endogenous variables that appear in this equation. The implication will be that 
we are going to predict Zj = (Xj, Yj) using X = (Xj, Xj

*). In order for these predictions 
to be linearly independent, there must be at least as many variables used to compute the 
predictions as there are variables being predicted. Comparing (Xj, Yj) to (Xj, Xj

*), we see 
that there must be at least as many variables in Xj

* as there are in Yj, which is the order 
condition. The practical rule of thumb that every equation have at least one variable in 
it that does not appear in any other equation will guarantee this outcome.

Two-stage least squares is used nearly universally in estimation of linear simultaneous 
equation models—for precisely the reasons outlined in Chapter 8. However, some 
applications (and some theoretical treatments) have suggested that the limited 
information maximum likelihood (LIML) estimator based on the normal distribution 
may have better properties. The technique has also found recent use in the analysis of 
weak instruments. A result that emerges from the derivation is that the LIML estimator 
has the same asymptotic distribution as the 2SLS estimator, and the latter does not rely 
on an assumption of normality. This raises the question why one would use the LIML 
technique given the availability of the more robust (and computationally simpler) 
alternative. Small sample results are sparse, but they would favor 2SLS as well.25 One 
significant virtue of LIML is its invariance to the normalization of the equation. Consider 
an example in a system of equations,

y1 = y2g2 + y3g3 + x1b1 + x2b2 + e1.

An equivalent equation would be

 y2 = y1(1/g2) + y3(-g3/g2) + x1(-b1/g2) + x2(-b2/g2) + e1(-1/g2)

 = y1g
∼

1 + y3g
∼

3 + x1b
∼

1 + x2b
∼

2 + e∼1.

The parameters of the second equation can be manipulated to produce those of the first. 
But, as you can easily verify, the 2SLS estimator is not invariant to the normalization 
of the equation—2SLS would produce numerically different answers. LIML would give 
the same numerical solutions to both estimation problems suggested earlier. A second 
virtue is LIML’s better performance in the presence of weak instruments.

The LIML, or least variance ratio estimator, can be computed as follows.26

Let

 Wj
0

= Ej
0=Ej

0, (10-44)

where

Yj
0

= [yj, Yj],

and

 Ej
0

= MjYj
0

= [I - Xj(Xj
=Xj)

-1Xj
=]Yj

0. (10-45)

25See Phillips (1983).
26The LIML estimator was derived by Anderson and Rubin (1949, 1950). [See, also, Johnston (1984).] The much 
simpler and equally efficient two-stage least squares estimator remains the estimator of choice.
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Each column of Ej
0 is a set of least squares residuals in the regression of the corresponding 

column of Yj
0 on Xj, that is, only the exogenous variables that appear in the jth equation. 

Thus, Wj
0 is the matrix of sums of squares and cross products of these residuals. Define

 Wj
1

= Ej
1′Ej

1
= Yj

0′[I - X(X′X)-1X′]Yj
0. (10-46)

That is, Wj
1 is defined like Wj

0 except that the regressions are on all the x’s in the model, 
not just the ones in the jth equation. Let

 l1 = smallest characteristic root of (Wj
1)-1Wj

0. (10-47)

This matrix is asymmetric, but all its roots are real and greater than or equal to 1. 
[Depending on the available software, it may be more convenient to obtain the identical 
smallest root of the symmetric matrix D = (Wj

1)-1/2Wj
0(Wj

1)-1/2.] Now partition Wj
0 into 

Wj
0

= Jwjj
0 wj

0′

wj
0 Wjj

0 R  corresponding to [yj, Yj], and partition Wj
1 likewise. Then, with these 

parts in hand,

Gn j, LIML = [Wjj
0 - l1Wjj

1]-1(wj
0 - l1wj

1) (10-48)

and

Bnj, LIML = (Xj
=Xj)

-1Xj
=(yj - YjGn j, LIML).

Note that Bj is estimated by a simple least squares regression.[See (3-18).] The asymptotic 
covariance matrix for the LIML estimator is identical to that for the 2SLS estimator.

Example 10.8  Simultaneity in Health Production
Example 7.1 analyzed the incomes of a subsample of Riphahn, Wambach, and Million’s 
(2003) data on health outcomes in the German Socioeconomic Panel. Here we continue 
Example 10.4 and consider a Grossman (1972) style model for health and incomes. Our 
two-equation model is

 Health Satisfaction = a1 + g1 ln Income + a2 Female + a3 Working + a4 Public + a5 Add On

+ a6 Age + eH,

 ln Income = b1 + g2 Health Satisfaction + b2 Female + b3 Education + b4 Married

 + b5HHKids + b6Age + eI.

For purposes of this application, we avoid panel data considerations by examining only 
the 1994 wave (cross section) of the data, which contains 3,377 observations. The health 
outcome variable is Self Assessed Health Satisfaction (HSAT). Whether this variable actually 
corresponds to a commonly defined objective measure of health outcomes is debateable. We 
will treat it as such. Second, the variable is a scale variable, coded in this data set 0 to 10. 
[In more recent versions of the GSOEP data, and in the British (BHPS) and Australian (HILDA) 
counterparts, it is coded 0 to 4.] We would ordinarily treat such a variable as a discrete ordered 
outcome, as we do in Examples 18.14 and 18.15. We will treat it as if it were continuous in 
this example, and recognize that there is likely to be some distortion in the measured effects 
that we are interested in. Female, Working, Married, and HHkids are dummy variables, the 
last indicating whether there are children living in the household. Education and Age are in 
years. Public and AddOn are dummy variables that indicate whether the individual takes 
up the public health insurance and, if so, whether he or she also takes up the additional 


