Pearson New International Edition

Introduction to Automata Theory Languages, and Computation Hopcroft Motwani Ullman Third Edition

Pearson Education Limited

Edinburgh Gate
Harlow
Essex CM20 2JE
England and Associated Companies throughout the world
Visit us on the World Wide Web at: www.pearsoned.co.uk
© Pearson Education Limited 2014

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written permission of the publisher or a licence permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd, Saffron House, 6-10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest in the author or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply any affiliation with or endorsement of this book by such owners.

PEARSON ${ }^{\circledR}$ ISBN 10: 1-292-03905-1
 ISBN 13: 978-1-292-03905-3

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

Let h be the homomorphism defined by $h(a)=01$ and $h(b)=10$. We claim that $h^{-1}(L)$ is the language of regular expression (ba)*, that is, all strings of repeating $b a$ pairs. We shall prove that $h(w)$ is in L if and only if w is of the form $b a b a \cdots b a$.
(If) Suppose w is n repetitions of $b a$ for some $n \geq 0$. Note that $h(b a)=1001$, so $h(w)$ is n repetitions of 1001. Since 1001 is composed of two 1 's and a pair of 0 's, we know that 1001 is in L. Therefore any repetition of 1001 is also formed from 1 and 00 segments and is in L. Thus, $h(w)$ is in L.
(Only-if) Now, we must assume that $h(w)$ is in L and show that w is of the form baba $\cdots b a$. There are four conditions under which a string is not of that form, and we shall show that if any of them hold then $h(w)$ is not in L. That is, we prove the contrapositive of the statement we set out to prove.

1. If w begins with a, then $h(w)$ begins with 01 . It therefore has an isolated 0 , and is not in L.
2. If w ends in b, then $h(w)$ ends in 10 , and again there is an isolated 0 in $h(w)$.
3. If w has two consecutive a 's, then $h(w)$ has a substring 0101. Here too, there is an isolated 0 in w.
4. Likewise, if w has two consecutive b 's, then $h(w)$ has substring 1010 and has an isolated 0 .

Thus, whenever one of the above cases hold, $h(w)$ is not in L. However, unless at least one of items (1) through (4) hold, then w is of the form baba $\cdots b a$. To see why, assume none of (1) through (4) hold. Then (1) tells us w must begin with b, and (2) tells us w ends with a. Statements (3) and (4) tell us that a 's and b 's must alternate in w. Thus, the logical "OR" of (1) through (4) is equivalent to the statement " w is not of the form $b a b a \cdots b a$." We have proved that the "OR" of (1) through (4) implies $h(w)$ is not in L. That statement is the contrapositive of the statement we wanted: "if $h(w)$ is in L, then w is of the form $b a b a \cdots b a$."

We shall next prove that the inverse homomorphism of a regular language is also regular, and then show how the theorem can be used.

Theorem 4.16: If h is a homomorphism from alphabet Σ to alphabet T, and L is a regular language over T, then $h^{-1}(L)$ is also a regular language.
PROOF: The proof starts with a DFA A for L. We construct from A and h a DFA for $h^{-1}(L)$ using the plan suggested by Fig. 4.6. This DFA uses the states of A but translates the input symbol according to h before deciding on the next state.

Formally, let L be $L(A)$, where DFA $A=\left(Q, T, \delta, q_{0}, F\right)$. Define a DFA

$$
B=\left(Q, \Sigma, \gamma, q_{0}, F\right)
$$

Figure 4.6: The DFA for $h^{-1}(L)$ applies h to its input, and then simulates the DFA for L
where transition function γ is constructed by the rule $\gamma(q, a)=\hat{\delta}(q, h(a))$. That is, the transition B makes on input a is the result of the sequence of transitions that A makes on the string of symbols $h(a)$. Remember that $h(a)$ could be ϵ, it could be one symbol, or it could be many symbols, but $\hat{\delta}$ is properly defined to take care of all these cases.

It is an easy induction on $|w|$ to show that $\hat{\gamma}\left(q_{0}, w\right)=\hat{\delta}\left(q_{0}, h(w)\right)$. Since the accepting states of A and B are the same, B accepts w if and only if A accepts $h(w)$. Put another way, B accepts exactly those strings w that are in $h^{-1}(L)$.

Example 4.17: In this example we shall use inverse homomorphism and several other closure properties of regular sets to prove an odd fact about finite automata. Suppose we required that a DFA visit every state at least once when accepting its input. More precisely, suppose $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is a DFA, and we are interested in the language L of all strings w in Σ^{*} such that $\hat{\delta}\left(q_{0}, w\right)$ is in F, and also for every state q in Q there is some prefix x_{q} of w such that $\hat{\delta}\left(q_{0}, x_{q}\right)=q$. Is L regular? We can show it is, but the construction is complex.

First, start with the language M that is $L(A)$, i.e., the set of strings that A accepts in the usual way, without regard to what states it visits during the processing of its input. Note that $L \subseteq M$, since the definition of L puts an additional condition on the strings of $L(A)$. Our proof that L is regular begins by using an inverse homomorphism to, in effect, place the states of A into the input symbols. More precisely, let us define a new alphabet T consisting of symbols that we may think of as triples [paq], where:

1. p and q are states in Q,
2. a is a symbol in Σ, and
3. $\delta(p, a)=q$.

That is, we may think of the symbols in T as representing transitions of the automaton A. It is important to see that the notation [paq] is our way of expressing a single symbol, not the concatenation of three symbols. We could have given it a single letter as a name, but then its relationship to p, q, and a would be hard to describe.

Now, define the homomorphism $h([p a q])=a$ for all p, a, and q. That is, h removes the state components from each of the symbols of T and leaves only the symbol from Σ. Our first step in showing L is regular is to construct the language $L_{1}=h^{-1}(M)$. Since M is regular, so is L_{1} by Theorem 4.16. The strings of L_{1} are just the strings of M with a pair of states, representing a transition, attached to each symbol.

As a very simple illustration, consider the two-state automaton of Fig. 4.4(a). The alphabet Σ is $\{0,1\}$, and the alphabet T consists of the four symbols $[p 0 q],[q 0 q],[p 1 p]$, and $[q 1 q]$. For instance, there is a transition from state p to q on input 0 , so $[p 0 q]$ is one of the symbols of T. Since 101 is a string accepted by the automaton, h^{-1} applied to this string will give us $2^{3}=8$ strings, of which $[p 1 p][p 0 q][q 1 q]$ and $[q 1 q][q 0 q][p 1 p]$ are two examples.

We shall now construct L from L_{1} by using a series of further operations that preserve regular languages. Our first goal is to eliminate all those strings of L_{1} that deal incorrectly with states. That is, we can think of a symbol like [paq] as saying the automaton was in state p, read input a, and thus entered state q. The sequence of symbols must satisfy three conditions if it is to be deemed an accepting computation of A :

1. The first state in the first symbol must be q_{0}, the start state of A.
2. Each transition must pick up where the previous one left off. That is, the first state in one symbol must equal the second state of the previous symbol.
3. The second state of the last symbol must be in F. This condition in fact will be guaranteed once we enforce (1) and (2), since we know that every string in L_{1} came from a string accepted by A.

The plan of the construction of L is shown in Fig. 4.7.
We enforce (1) by intersecting L_{1} with the set of strings that begin with a symbol of the form $\left[q_{0} a q\right]$ for some symbol a and state q. That is, let E_{1} be the expression $\left[q_{0} a_{1} q_{1}\right]+\left[q_{0} a_{2} q_{2}\right]+\cdots$, where the pairs $a_{i} q_{i}$ range over all pairs in $\Sigma \times Q$ such that $\delta\left(q_{0}, a_{i}\right)=q_{i}$. Then let $L_{2}=L_{1} \cap L\left(E_{1} T^{*}\right)$. Since $E_{1} T^{*}$ is a regular expression denoting all strings in T^{*} that begin with the start state (treat T in the regular expression as the sum of its symbols), L_{2} is all strings that are formed by applying h^{-1} to language M and that have the start state as the first component of its first symbol; i.e., it meets condition (1).

To enforce condition (2), it is easier to subtract from L_{2} (using the setdifference operation) all those strings that violate it. Let E_{2} be the regular expression consisting of the sum (union) of the concatenation of all pairs of

Figure 4.7: Constructing language L from language M by applying operations that preserve regularity of languages
symbols that fail to match; that is, pairs of the form $[p a q][r b s]$ where $q \neq r$. Then $T^{*} E_{2} T^{*}$ is a regular expression denoting all strings that fail to meet condition (2).

We may now define $L_{3}=L_{2}-L\left(T^{*} E_{2} T^{*}\right)$. The strings of L_{3} satisfy condition (1) because strings in L_{2} must begin with the start symbol. They satisfy condition (2) because the subtraction of $L\left(T^{*} E_{2} T^{*}\right)$ removes any string that violates that condition. Finally, they satisfy condition (3), that the last state is accepting, because we started with only strings in M, all of which lead to acceptance by A. The effect is that L_{3} consists of the strings in M with the states of the accepting computation of that string embedded as part of each symbol. Note that L_{3} is regular because it is the result of starting with the regular language M, and applying operations - inverse homomorphism, intersection, and set difference - that yield regular sets when applied to regular sets.

Recall that our goal was to accept only those strings in M that visited every state in their accepting computation. We may enforce this condition by additional applications of the set-difference operator. That is, for each state q, let E_{q} be the regular expression that is the sum of all the symbols in T such that q appears in neither its first or last position. If we subtract $L\left(E_{q}^{*}\right)$ from L_{3} we have those strings that are an accepting computation of A and that visit
state q at least once. If we subtract from L_{3} all the languages $L\left(E_{q}^{*}\right)$ for q in Q, then we have the accepting computations of A that visit all the states. Call this language L_{4}. By Theorem 4.10 we know L_{4} is also regular.

Our final step is to construct L from L_{4} by getting rid of the state components. That is, $L=h\left(L_{4}\right)$. Now, L is the set of strings in Σ^{*} that are accepted by A and that visit each state of A at least once during their acceptance. Since regular languages are closed under homomorphisms, we conclude that L is regular.

4.2.5 Exercises for Section 4.2

Exercise 4.2.1: Suppose h is the homomorphism from the alphabet $\{0,1,2\}$ to the alphabet $\{a, b\}$ defined by: $h(0)=a ; h(1)=a b$, and $h(2)=b a$.

* a) What is $h(0120)$?
b) What is $h(21120)$?
* c) If L is the language $L\left(\mathbf{0 1}^{*} \mathbf{2}\right)$, what is $h(L)$?
d) If L is the language $L(\mathbf{0}+\mathbf{1 2})$, what is $h(L)$?
* e) Suppose L is the language $\{a b a b a\}$, that is, the language consisting of only the one string ababa. What is $h^{-1}(L)$?
!f) If L is the language $L\left(\mathbf{a}(\mathbf{b a})^{*}\right)$, what is $h^{-1}(L)$?
*! Exercise 4.2.2: If L is a language, and a is a symbol, then L / a, the quotient of L and a, is the set of strings w such that $w a$ is in L. For example, if $L=\{a, a a b, b a a\}$, then $L / a=\{\epsilon, b a\}$. Prove that if L is regular, so is L / a. Hint: Start with a DFA for L and consider the set of accepting states.
! Exercise 4.2.3: If L is a language, and a is a symbol, then $a \backslash L$ is the set of strings w such that $a w$ is in L. For example, if $L=\{a, a a b, b a a\}$, then $a \backslash L=\{\epsilon, a b\}$. Prove that if L is regular, so is $a \backslash L$. Hint: Remember that the regular languages are closed under reversal and under the quotient operation of Exercise 4.2.2.
! Exercise 4.2.4: Which of the following identities are true?
a) $(L / a) a=L$ (the left side represents the concatenation of the languages L / a and $\{a\})$.
b) $a(a \backslash L)=L$ (again, concatenation with $\{a\}$, this time on the left, is intended).
c) $(L a) / a=L$.
d) $a \backslash(a L)=L$.

