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Subspaces of Rn and Their Dimensions

Example 6 suggests the following result.

Theorem 2.7 Relations and linear dependence

The vectors �v1, . . . , �vm in Rn are linearly dependent if (and only if) there are
nontrivial relations among them.

Proof • Suppose vectors �v1, . . . , �vm are linearly dependent, and �vi = c1 �v1 + · · · +
ci−1 �vi−1 is a redundant vector in this list. Then we can generate a nontrivial
relation by subtracting �vi from both sides: c1 �v1+· · ·+ci−1 �vi−1+(−1)�vi = �0.

• Conversely, if there is a nontrivial relation c1 �v1 +· · ·+ci �vi +· · ·+cm �vm = �0,
where i is the highest index such that ci �= 0, then we can solve for �vi and
thus express �vi as a linear combination of the preceding vectors:

�vi = −
c1

ci

�v1 − · · · −
ci−1

ci

�vi−1.

This shows that vector �vi is redundant, so that vectors �v1, . . . , �vm are linearly
dependent, as claimed.

�

EXAMPLE 7 Suppose the column vectors of an n × m matrix A are linearly independent. Find
the kernel of matrix A.

Solution

We need to solve the equation

A�x = �0 or

⎡

⎢
⎣

| |

�v1 · · · �vm

| |

⎤

⎥
⎦

⎡

⎢
⎣

x1

...

xm

⎤

⎥
⎦ = �0 or x1 �v1 + · · · + xm �vm = �0.

We see that finding the kernel of A amounts to finding the relations among the
column vectors of A. By Theorem 2.7, there is only the trivial relation, with
x1 = · · · = xm = 0, so that ker(A) = {�0}. �

Let us summarize the findings of Example 7.

Theorem 2.8 Kernel and relations

The vectors in the kernel of an n ×m matrix A correspond to the linear relations
among the column vectors �v1, . . . , �vm of A: The equation

A�x = �0 means that x1 �v1 + · · · + xm �vm = �0.

In particular, the column vectors of A are linearly independent if (and only if)
ker(A) = {�0}, or, equivalently, if rank(A) = m. This condition implies that
m ≤ n.

Thus, we can find at most n linearly independent vectors in Rn .
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Subspaces of Rn and Their Dimensions

EXAMPLE 8 Consider the matrix

A =

⎡

⎣

1 4 7

2 5 8

3 6 9

⎤

⎦

to illustrate the connection between redundant column vectors, relations among the
column vectors, and the kernel. See Example 6.

Redundant column vector:

⎡

⎣

7

8

9

⎤

⎦ = −

⎡

⎣

1

2

3

⎤

⎦ + 2

⎡

⎣

4

5

6

⎤

⎦

✻

❄

Relation among column vectors: 1

⎡

⎣

1

2

3

⎤

⎦ − 2

⎡

⎣

4

5

6

⎤

⎦ + 1

⎡

⎣

7

8

9

⎤

⎦ = �0

✻

❄

Vector

⎡

⎣

1

−2

1

⎤

⎦ is in ker(A), since

⎡

⎣

1 4 7

2 5 8

3 6 9

⎤

⎦

⎡

⎣

1

−2

1

⎤

⎦ =

⎡

⎣

0

0

0

⎤

⎦

�

In the following summary we list the various characterizations of linear
independence discussed thus far (in Definition 2.3b, Theorem 2.7, and Theo-
rem 2.8). We include one new characterization, (iii). The proof of the equivalence
of statements (iii) and (iv) is left to the reader as Exercise 35; it is analogous to the
proof of Theorem 2.7.

SUMMARY 2.9 Various characterizations of linear independence

For a list �v1, . . . , �vm of vectors in Rn , the following statements are equivalent:

i. Vectors �v1, . . . , �vm are linearly independent.

ii. None of the vectors �v1, . . . , �vm is redundant, meaning that none of them
is a linear combination of preceding vectors.

iii. None of the vectors �vi is a linear combination of the other vectors
�v1, . . . , �vi−1, �vi+1, . . . , �vm in the list.

iv. There is only the trivial relation among the vectors �v1, . . . , �vm , mean-
ing that the equation c1 �v1 + · · · + cm �vm = �0 has only the solution
c1 = · · · = cm = 0.

v. ker

⎡

⎣

| |

�v1 · · · �vm

| |

⎤

⎦ = {�0}.

vi. rank

⎡

⎣

| |

�v1 · · · �vm

| |

⎤

⎦ = m.

We conclude this section with an important alternative characterization of a
basis. See Definition 2.3c.
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Subspaces of Rn and Their Dimensions

EXAMPLE 9 If �v1, . . . , �vm is a basis of a subspace V of Rn , and if �v is a vector in V , how many
solutions c1, . . . , cm does the equation

�v = c1 �v1 + · · · + cm �vm

have?

Solution

There is at least one solution, since the vectors �v1, . . . , �vm span V (that’s part of the
definition of a basis). Suppose we have two representations

�v = c1 �v1 + · · · + cm �vm

= d1 �v1 + · · · + dm �vm .

By subtraction, we find

(c1 − d1)�v1 + · · · + (cm − dm)�vm = �0,

a relation among the vectors �v1, . . . , �vm . Since the vectors �v1, . . . , �vm are linearly
independent, this must be the trivial relation, and we have c1 − d1 = 0, . . . ,

cm − dm = 0, or c1 = d1, . . . , cm = dm . It turns out that the two representa-
tions �v = c1 �v1 + · · · + cm �vm and �v = d1 �v1 + · · · + dm �vm are identical. We have
shown that there is one and only one way to write �v as a linear combination of the
basis vectors �v1, . . . , �vm . �

Let us summarize.

Theorem 2.10 Basis and unique representation

Consider the vectors �v1, . . . , �vm in a subspace V of Rn .
The vectors �v1, . . . , �vm form a basis of V if (and only if) every vector �v in

V can be expressed uniquely as a linear combination

�v = c1 �v1 + · · · + cm �vm .

(In Section 4, we will call the coefficients c1, . . . , cm the coordinates of �v with
respect to the basis �v1, . . . , �vm .)

Proof In Example 9 we have shown only one part of Theorem 2.10; we still need to verify
that the uniqueness of the representation �v = c1 �v1 + · · · + cm �vm (for every �v in
V ) implies that �v1, . . . , �vm is a basis of V . Clearly, the vectors �v1, . . . , �vm span V ,
since every �v in V can be written as a linear combination of �v1, . . . , �vm .

To show the linear independence of vectors �v1, . . . , �vm , consider a relation
c1 �v1 + · · · + cm �vm = �0. This relation is a representation of the zero vector
as a linear combination of �v1, . . . , �vm . But this representation is unique, with
c1 = · · · = cm = 0, so that c1 �v1 + · · · + cm �vm = �0 must be the trivial relation. We
have shown that vectors �v1, . . . , �vm are linearly independent. �

Consider the plane V = im(A) = span(�v1, �v2, �v3, �v4) introduced in Exam-
ple 4. (Take another look at Figure 4.)

We can write

�v4 = 1�v1 + 0�v2 + 1�v3 + 0�v4

= 0�v1 + 0�v2 + 0�v3 + 1�v4,

illustrating the fact that the vectors �v1, �v2, �v3, �v4 do not form a basis of V . However,
every vector �v in V can be expressed uniquely as a linear combination of �v1 and �v3

alone, meaning that the vectors �v1, �v3 do form a basis of V .

137



Subspaces of Rn and Their Dimensions

EXERCISES 2

GOAL Check whether or not a subset of Rn is a sub-

space. Apply the concept of linear independence (in terms

of Definition 2.3, Theorem 2.7, and Theorem 2.8). Apply

the concept of a basis, both in terms of Definition 2.3 and

in terms of Theorem 2.10.

Which of the sets W in Exercises 1 through 3 are sub-

spaces of R3?

1. W =

⎧

⎨

⎩

⎡

⎣

x

y

z

⎤

⎦ : x + y + z = 1

⎫

⎬

⎭

2. W =

⎧

⎨

⎩

⎡

⎣

x

y

z

⎤

⎦ : x ≤ y ≤ z

⎫

⎬

⎭

3. W =

⎧

⎨

⎩

⎡

⎣

x + 2y + 3z

4x + 5y + 6z

7x + 8y + 9z

⎤

⎦ : x, y, z arbitrary constants

⎫

⎬

⎭

4. Consider the vectors �v1, �v2, . . . , �vm in Rn . Is span
(�v1, . . . , �vm) necessarily a subspace of Rn? Justify your
answer.

5. Give a geometrical description of all subspaces of R3.
Justify your answer.

6. Consider two subspaces V and W of Rn .

a. Is the intersection V ∩ W necessarily a subspace
of Rn?

b. Is the union V ∪ W necessarily a subspace of Rn?

7. Consider a nonempty subset W of Rn that is closed un-
der addition and under scalar multiplication. Is W nec-
essarily a subspace of Rn? Explain.

8. Find a nontrivial relation among the following vectors:

[
1

2

]

,

[
2

3

]

,

[
3

4

]

.

9. Consider the vectors �v1, �v2, . . . , �vm in Rn , with �vm =
�0. Are these vectors linearly independent?

In Exercises 10 through 20, use paper and pencil to iden-

tify the redundant vectors. Thus determine whether the

given vectors are linearly independent.

10.

[
7

11

]

,

[
0

0

]

11.

[
7

11

]

,

[
11

7

]

12.

[
2

1

]

,

[
6

3

]

13.

[
1

2

]

,

[
1

2

]

14.

⎡

⎣

1

1

1

⎤

⎦,

⎡

⎣

3

2

1

⎤

⎦,

⎡

⎣

6

5

4

⎤

⎦ 15.

[
1

2

]

,

[
2

3

]

,

[
3

4

]

16.

⎡

⎣

1

0

0

⎤

⎦,

⎡

⎣

1

2

0

⎤

⎦,

⎡

⎣

1

2

3

⎤

⎦ 17.

⎡

⎣

1

1

1

⎤

⎦,

⎡

⎣

1

2

3

⎤

⎦,

⎡

⎣

1

3

6

⎤

⎦

18.

⎡

⎣

0

0

0

⎤

⎦,

⎡

⎣

1

0

0

⎤

⎦,

⎡

⎣

3

0

0

⎤

⎦,

⎡

⎣

0

1

0

⎤

⎦,

⎡

⎣

4

5

0

⎤

⎦,

⎡

⎣

6

7

0

⎤

⎦,

⎡

⎣

0

0

1

⎤

⎦

19.

⎡

⎢
⎢
⎣

1

0

0

0

⎤

⎥
⎥
⎦

,

⎡

⎢
⎢
⎣

2

0

0

0

⎤

⎥
⎥
⎦

,

⎡

⎢
⎢
⎣

0

1

0

0

⎤

⎥
⎥
⎦

,

⎡

⎢
⎢
⎣

0

0

1

0

⎤

⎥
⎥
⎦

,

⎡

⎢
⎢
⎣

3

4

5

0

⎤

⎥
⎥
⎦

20.

⎡

⎢
⎢
⎣

1

1

1

1

⎤

⎥
⎥
⎦

,

⎡

⎢
⎢
⎣

1

2

3

4

⎤

⎥
⎥
⎦

,

⎡

⎢
⎢
⎣

1

4

7

10

⎤

⎥
⎥
⎦

In Exercises 21 through 26, find a redundant column vec-

tor of the given matrix A, and write it as a linear com-

bination of preceding columns. Use this representation to

write a nontrivial relation among the columns, and thus

find a nonzero vector in the kernel of A. (This procedure

is illustrated in Example 8.)

21.

[
1 1

1 1

]

22.

[
1 3

2 6

]

23.

[
0 1

0 2

]

24.

⎡

⎣

1 0 2 0

0 1 3 0

0 0 0 1

⎤

⎦ 25.

⎡

⎣

1 0 1

1 1 1

1 0 1

⎤

⎦

26.

⎡

⎣

1 3 6

1 2 5

1 1 4

⎤

⎦

Find a basis of the image of the matrices in Exercises 27

through 33.

27.

⎡

⎣

1 1

1 2

1 3

⎤

⎦ 28.

⎡

⎣

0 1 0

0 0 1

0 0 0

⎤

⎦ 29.

[
1 2 3

4 5 6

]

30.

⎡

⎣

1 1 1

1 2 5

1 3 7

⎤

⎦ 31.

⎡

⎢
⎢
⎣

1 5

2 6

3 7

5 8

⎤

⎥
⎥
⎦

32.

⎡

⎢
⎢
⎣

0 1 2 0 0 3

0 0 0 1 0 4

0 0 0 0 1 5

0 0 0 0 0 0

⎤

⎥
⎥
⎦

33.

⎡

⎢
⎢
⎣

0 1 2 0 3 0

0 0 0 1 4 0

0 0 0 0 0 1

0 0 0 0 0 0

⎤

⎥
⎥
⎦
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34. Consider the 5 × 4 matrix

A =

⎡

⎣

| | | |

�v1 �v2 �v3 �v4

| | | |

⎤

⎦ .

We are told that the vector

⎡

⎢
⎢
⎣

1

2

3

4

⎤

⎥
⎥
⎦

is in the kernel of A.

Write �v4 as a linear combination of �v1, �v2, �v3.

35. Show that there is a nontrivial relation among the vec-
tors �v1, . . . , �vm if (and only if) at least one of the vec-
tors �vi is a linear combination of the other vectors
�v1, . . . , �vi−1, �vi+1, . . . , �vm .

36. Consider a linear transformation T from Rn to Rp and
some linearly dependent vectors �v1, �v2, . . . , �vm in Rn .
Are the vectors T (�v1), T (�v2), . . . , T (�vm) necessarily
linearly dependent? How can you tell?

37. Consider a linear transformation T from Rn to Rp and
some linearly independent vectors �v1, �v2, . . . , �vm in
Rn . Are the vectors T (�v1), T (�v2), . . . , T (�vm) necessar-
ily linearly independent? How can you tell?

38. a. Let V be a subspace of Rn . Let m be the largest num-
ber of linearly independent vectors we can find in V .
(Note that m ≤ n, by Theorem 2.8.) Choose linearly
independent vectors �v1, �v2, . . . , �vm in V . Show that
the vectors �v1, �v2, . . . , �vm span V and are therefore
a basis of V . This exercise shows that any subspace
of Rn has a basis.

If you are puzzled, think first about the special
case when V is a plane in R3. What is m in this case?

b. Show that any subspace V of Rn can be represented
as the image of a matrix.

39. Consider some linearly independent vectors �v1, �v2, . . . ,

�vm in Rn and a vector �v in Rn that is not contained in
the span of �v1, �v2, . . . , �vm . Are the vectors �v1, �v2, . . . ,

�vm , �v necessarily linearly independent? Justify your
answer.

40. Consider an n × p matrix A and a p × m matrix B. We
are told that the columns of A and the columns of B are
linearly independent. Are the columns of the product
AB linearly independent as well? Hint: Exercise 1.51 is
useful.

41. Consider an m × n matrix A and an n × m matrix B

(with n �= m) such that AB = Im . (We say that A is a
left inverse of B.) Are the columns of B linearly inde-
pendent? What about the columns of A?

42. Consider some perpendicular unit vectors �v1, �v2, . . . ,

�vm in Rn . Show that these vectors are necessarily lin-
early independent. Hint: Form the dot product of �vi and
both sides of the equation

c1 �v1 + c2 �v2 + · · · + ci �vi + · · · + cm �vm = �0.

43. Consider three linearly independent vectors �v1, �v2, �v3

in Rn . Are the vectors �v1, �v1 + �v2, �v1 + �v2 + �v3 linearly
independent as well? How can you tell?

44. Consider linearly independent vectors �v1, �v2, . . . , �vm

in Rn , and let A be an invertible m × m matrix. Are the
columns of the following matrix linearly independent?

⎡

⎣

| | |

�v1 �v2 . . . �vm

| | |

⎤

⎦ A

45. Are the columns of an invertible matrix linearly inde-
pendent?

46. Find a basis of the kernel of the matrix
[

1 2 0 3 5

0 0 1 4 6

]

.

Justify your answer carefully; that is, explain how you
know that the vectors you found are linearly indepen-
dent and span the kernel.

47. Consider three linearly independent vectors �v1, �v2, �v3

in R4. Find

rref

⎡

⎣

| | |

�v1 �v2 �v3

| | |

⎤

⎦ .

48. Express the plane V in R3 with equation 3x1 + 4x2 +
5x3 = 0 as the kernel of a matrix A and as the image of
a matrix B.

49. Express the line L in R3 spanned by the vector

⎡

⎣

1

1

1

⎤

⎦ as

the image of a matrix A and as the kernel of a matrix B.

50. Consider two subspaces V and W of Rn . Let V + W be
the set of all vectors in Rn of the form �v + �w, where �v
is in V and �w in W . Is V + W necessarily a subspace
of Rn?

If V and W are two distinct lines in R3, what is
V + W ? Draw a sketch.

51. Consider two subspaces V and W of Rn whose inter-
section consists only of the vector �0.

a. Consider linearly independent vectors �v1, �v2, . . . ,

�v p in V and �w1, �w2, . . . , �wq in W . Explain why the
vectors �v1, �v2, . . . , �v p , �w1, �w2, . . . , �wq are linearly
independent.

b. Consider a basis �v1, �v2, . . . , �v p of V and a ba-
sis �w1, �w2, . . . , �wq of W . Explain why �v1, �v2, . . . ,

�v p, �w1, �w2, . . . , �wq is a basis of V + W . See Exer-
cise 50.

52. For which values of the constants a, b, c, d , e, and f

are the following vectors linearly independent? Justify
your answer.
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