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Theorem 2.7

Proof

EXAMPLE 7

Theorem 2.8

Subspaces of R” and Their Dimensions

Example 6 suggests the following result.

Relations and linear dependence

The vectors vy, ..., U, in R" are linearly dependent if (and only if) there are

nontrivial relations among them.

e Suppose vectors vy, ..., U, are linearly dependent, and v; = ¢;U; + --- +
¢;_1V;_1 is a redundant vector in this list. Then we can generate a nontrivial
relation by subtracting v; from both sides: ¢; v+ - -+c¢;_10;_1+(—=1)v; = 0.

o Conversely, if there is a nontrivial relation ¢1 01 +- - - +¢;U; +- - -+ CpUpm = 0,
where i is the highest index such that ¢; # 0, then we can solve for v; and
thus express v; as a linear combination of the preceding vectors:

o Cl - Ci—1 -
Ui=——0; = — —T
Ci i
This shows that vector v; is redundant, so that vectors vy, ..., U, are linearly

dependent, as claimed. -

Suppose the column vectors of an n x m matrix A are linearly independent. Find
the kernel of matrix A.

Solution
We need to solve the equation

| | Xy
AXx =0 or Uy - Up D =0 or xUp+4--+x,U, =0.

| | X

We see that finding the kernel of A amounts to finding the relations among the
column vectors of A. By Theorem 2.7, there is only the trivial relation, with
Xy =---=x,; =0, so that ker(A) = {0}. [ |

Let us summarize the findings of Example 7.

Kernel and relations

The vectors in the kernel of an n x m matrix A correspond to the linear relations
among the column vectors vy, ..., U,y of A: The equation
AX =0 meansthat x;0; 4 4+ x,0, =0.

In particular, the column vectors of A are linearly independent if (and only if)
ker(A) = {0}, or, equivalently, if rank(A) = m. This condition implies that
m <n.

Thus, we can find at most n linearly independent vectors in R”.
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Subspaces of R” and Their Dimensions

EXAMPLE 8 Consider the matrix
1 4 7
A=12 5 8
369
to illustrate the connection between redundant column vectors, relations among the

column vectors, and the kernel. See Example 6.

7 1 4
Redundant column vector: 8 =— 2| +2 |5
9 3 6

1 4 7
Relation among column vectors: 1 |2| —2 5| +1 [8| = 0
3 6 9

1 1 4 7 1 0
Vector | —2| isinker(A),since |2 5 8 21 =10
1 3 6 9 1 0 [ |

In the following summary we list the various characterizations of linear
independence discussed thus far (in Definition 2.3b, Theorem 2.7, and Theo-
rem 2.8). We include one new characterization, (iii). The proof of the equivalence
of statements (iii) and (iv) is left to the reader as Exercise 35; it is analogous to the
proof of Theorem 2.7.

For a list vy, ..., U, of vectors in R", the following statements are equivalent:

i. Vectors vy, ..., U, are linearly independent.

ii. None of the vectors vy, ..., 1, is redundant, meaning that none of them
is a linear combination of preceding vectors.

iii. None of the vectors v; is a linear combination of the other vectors

171, ey 61_1, ﬁi+1, ceey ljm in the list.

iv. There is only the trivial relation among the vectors Ui, ..., Un, Mean-
ing that the equation ¢1v; + --- + ¢, U, = 0 has only the solution
cp=---=cp=0.

v. ker |, -+ U, | = {0}

vi. rank |, --- U, | =m.

We conclude this section with an important alternative characterization of a
basis. See Definition 2.3c.



EXAMPLE 9

Theorem 2.10

Proof

Subspaces of R” and Their Dimensions

If ¥y, ..., U, is a basis of a subspace V of R", and if v is a vector in V, how many
solutions cy, . . ., ¢;; does the equation

V=cCiV1+ -+ Coplp

have?

Solution

There is at least one solution, since the vectors vy, ..., U, span V (that’s part of the
definition of a basis). Suppose we have two representations

6:C151 +"'+Cm5m
=d\v; + -+ dpvy.
By subtraction, we find

(Cl - dl)ﬁl +---+ (Cm - m)l_jm = 6,

a relation among the vectors vy, .. ., U,,. Since the vectors Uy, ..., U,, are linearly
independent, this must be the trivial relation, and we have ¢; — d; = O, ...,
¢m —dy = 0,0rcy =dj, ..., ¢y = dy. It turns out that the two representa-

tions U = c1U1 + -+ + ¢y and ¥ = d1Uy + - -+ + d, U, are identical. We have
shown that there is one and only one way to write v as a linear combination of the
basis vectors vy, ..., Up. [ |

Let us summarize.

Basis and unique representation

Consider the vectors Uy, ..., U, in a subspace V of R".
The vectors vy, ..., U,, form a basis of V if (and only if) every vector ¥ in
V can be expressed uniquely as a linear combination
vV=cCiV1+ -+ CpUp.

(In Section 4, we will call the coefficients cy, .. ., ¢,, the coordinates of v with
respect to the basis U1, ..., Uy.)

In Example 9 we have shown only one part of Theorem 2.10; we still need to verify
that the uniqueness of the representation v = ¢V + -+ - + ¢, U, (for every v in
V) implies that vy, ..., U,, is a basis of V. Clearly, the vectors vy, ..., U,, span V,
since every v in V can be written as a linear combination of vy, ..., Uy,.

To show the linear irldependence of vectors v1, ..., U,, consider a relation
c1v; + -+ + cuU, = 0. This relation is a representation of the zero vector
as a linear combination of vy, ..., v,. But this_} representation is unique, with
cj =--=c¢u =0,s0thatc;v; + - - - + ¢V, = 0 must be the trivial relation. We
have shown that vectors vy, ..., vU,, are linearly independent. [ |

Consider the plane V = im(A) = span(vy, Uy, U3, U4) introduced in Exam-
ple 4. (Take another look at Figure 4.)
We can write
174 = 1171 +0172 + 1173 + 0174
= 0y + 0vy + 0v3 + 174,

illustrating the fact that the vectors vy, U, U3, U4 do not form a basis of V. However,
every vector v in V can be expressed uniquely as a linear combination of v, and U3
alone, meaning that the vectors vy, v3 do form a basis of V.
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Subspaces of R” and Their Dimensions

EXERCISES 2

GOAL Check whether or not a subset of R" is a sub-
space. Apply the concept of linear independence (in terms
of Definition 2.3, Theorem 2.7, and Theorem 2.8). Apply
the concept of a basis, both in terms of Definition 2.3 and
in terms of Theorem 2.10.

Which of the sets W in Exercises 1 through 3 are sub-
spaces of R3?

X
1. W= yIix+y+z=1
_Z_
]
2. W= ylix=y=z
_Z_
[ x+2y+3z
3. W= 4x + S5y + 6z | :x, y, z arbitrary constants
| 7x +8y +9z

4. Consider the vectors Uy, U3,..., Uy in R". Is span
(U1, ..., Un) necessarily a subspace of R”? Justify your
answer.

5. Give a geometrical description of all subspaces of R3.
Justify your answer.

6. Consider two subspaces V and W of R”.
a. Is the intersection V N W necessarily a subspace
of R"?
b. Is the union V U W necessarily a subspace of R"?
7. Consider a nonempty subset W of R” that is closed un-

der addition and under scalar multiplication. Is W nec-
essarily a subspace of R"? Explain.

8. Find a nontrivial relation among the following vectors:

HENH AL

9. Consider the vectors U1, Uy, ..., Uy in R", with U, =
0. Are these vectors linearly independent?

In Exercises 10 through 20, use paper and pencil to iden-
tify the redundant vectors. Thus determine whether the
given vectors are linearly independent.

| 1 1 1 | 1
16. |0 21,12 17. |1, |2], |3
0] [0] [3 11] 3] L6
[0 [17 [37 [o] [4] [6] [O]
18. |0 Of, 0], |1], |5 71,10
0] (0] [O0] |O0] |0] (O] [1]
[17 [27 [0] [0] [3]
0 0 1 0 4
19. 0 o110 |1]" |5
101 [O0] [O0] [O0] |O]
17 [17 [ 1
1 2 4
20. | 30| 7
1] 4] [10

In Exercises 21 through 26, find a redundant column vec-
tor of the given matrix A, and write it as a linear com-
bination of preceding columns. Use this representation to
write a nontrivial relation among the columns, and thus
find a nonzero vector in the kernel of A. (This procedure
is illustrated in Example 8.)

AN [ 7] [11
10. _HHO} . _“},H
21 [6 (17 [1
12 IHJ 1. _sz]
B 371 [6 -
14. [1],]2], |5 15. ;}B]{
1 1 4 L

(1 1 1 3 0 1
21. B 1} 22. [2 6] 23, [0 2]
1 0 2 0 1 0 1
24. |0 1 3 0 25. |1 1 1

10 0 0 1 1 0 1
1 3 6
26. |1 2 5
11 4
Find a basis of the image of the matrices in Exercises 27
through 33.
11 01 0
27. |1 2 28. |0 O 1 29 [i i Z]
|1 3 0 0 0
R s
30. |1 2 5 31.
1 3 7 37
- 5 8
[0 1 2 0 0 37
00 01 0 4
32. 00 0 01 5
(0 0 0 0 0 0]
[0 1 2 0 3 0]
00 01 40
33. 00 0 0 0 1
(00 0 0 0 0]




34.

35.

36.

37.

38.

39.

40.

41.

42.

Subspaces of R” and Their Dimensions

Consider the 5 x 4 matrix
[
A= |v; vy U3 U4

is in the kernel of A.

1
2
We are told that the vector 3

4
Write U4 as a linear combination of ¥, U2, U3.

Show that there is a nontrivial relation among the vec-
tors vy, ..., Uy, if (and only if) at least one of the vec-
tors v; is a linear combination of the other vectors
51, ey 17,'_1, 17[+1, Ceey ljm.

Consider a linear transformation 7 from R” to R” and
some linearly dependent vectors Uy, Uy, ..., Uy in R”,
Are the vectors T (vy), T (V2), ..., T(V,;) necessarily
linearly dependent? How can you tell?

Consider a linear transformation 7 from R” to R” and
some linearly independent vectors vy, Uz, ..., Uy in
R™. Are the vectors T (v1), T (v2), ..., T (V) necessar-
ily linearly independent? How can you tell?

a. Let V be a subspace of R”. Let m be the largest num-
ber of linearly independent vectors we can findin V.
(Note that m < n, by Theorem 2.8.) Choose linearly
independent vectors Uy, Vs, ..., Uy, in V. Show that
the vectors vy, v2, ..., Uy span V and are therefore
a basis of V. This exercise shows that any subspace
of R” has a basis.

If you are puzzled, think first about the special
case when V is a plane in R?. What is m in this case?

b. Show that any subspace V of R" can be represented
as the image of a matrix.

Consider some linearly independent vectors vy, v, . . . ,
Uy, in R" and a vector v in R” that is not contained in
the span of U1, Uy, ..., Uy. Are the vectors vy, v, .. .,
Um, U necessarily linearly independent? Justify your
answer.

Consider an n x p matrix A and a p x m matrix B. We
are told that the columns of A and the columns of B are
linearly independent. Are the columns of the product
AB linearly independent as well? Hint: Exercise 1.51 is
useful.

Consider an m x n matrix A and an n X m matrix B
(with n %% m) such that AB = I,,. (We say that A is a
left inverse of B.) Are the columns of B linearly inde-
pendent? What about the columns of A?

Consider some perpendicular unit vectors vy, v, ...,
Uy, in R". Show that these vectors are necessarily lin-
early independent. Hint: Form the dot product of v; and
both sides of the equation

clv] + oo+ +civ; + -+ cpvy, =0.

43.

45.

46.

47.

48.

49.

50.

51.

52.

Consider three linearly independent vectors vy, V2, U3
in R". Are the vectors ¥y, U1 + U2, U1 + v + U3 linearly
independent as well? How can you tell?

Consider linearly independent vectors vy, U7, ..., Uny

in R”, and let A be an invertible m x m matrix. Are the
columns of the following matrix linearly independent?

Are the columns of an invertible matrix linearly inde-
pendent?

Find a basis of the kernel of the matrix

1 2 0 3 5
0 01 4 6]

Justify your answer carefully; that is, explain how you
know that the vectors you found are linearly indepen-
dent and span the kernel.

Consider three linearly independent vectors vy, V2, U3
in R*. Find
| | |
rref [ U7 Un U3

Express the plane V in R3 with equation 3x; + 4x; +
5x3 = 0 as the kernel of a matrix A and as the image of
a matrix B.

1
Express the line L in R3 spanned by the vector | 1| as
1
the image of a matrix A and as the kernel of a matrix B.

Consider two subspaces V and W of R”. Let V + W be
the set of all vectors in R” of the form v + w, where v
isin V and w in W.Is V + W necessarily a subspace
of R"?

If V and W are two distinct lines in ]R3, what is
V + W? Draw a sketch.

Consider two subspaces V and W_of R" whose inter-
section consists only of the vector 0.

a. Consider linearly independent vectors vy, U2, ...,
Upin V and Wy, W, ..., Wy in W. Explain why the

vectors Uy, U2, ..., Up, Wi, W2, .. ., Wy are linearly
independent.

b. Consider a basis v, v2,...,0, of V and a ba-
sis Wy, Wy, ..., Wy of W. Explain why Uy, v, ...,
Up, Wy, W2, ..., Wy is a basis of V + W. See Exer-
cise 50.

For which values of the constants a, b, ¢, d, e, and f
are the following vectors linearly independent? Justify
your answer.
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