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Multiple Regression Analysis

so, we use the partial regression plot for each independent variable in the equation. In Figure 11 we see
that the relationships for X6, X9, and X12 are reasonably well defined; that is, they have strong and
significant effects in the regression equation. Variables X7 and X11 are less well defined, both in slope
and scatter of the points, thus explaining their lesser effect in the equation (evidenced by the smaller
coefficient, beta value, and significance level). For all five variables, no nonlinear pattern is shown,
thus meeting the assumption of linearity for each independent variable.

Homoscedasticity. The next assumption deals with the constancy of the residuals across values
of the independent variables. Our analysis is again through examination of the residuals (Figure 10),
which shows no pattern of increasing or decreasing residuals. This finding indicates homoscedasticity
in the multivariate (the set of independent variables) case.

Independence of the Residuals. The third assumption deals with the effect of carryover from
one observation to another, thus making the residual not independent. When carryover is found in
such instances as time series data, the researcher must identify the potential sequencing variables
(such as time in a time series problem) and plot the residuals by this variable. For example, assume
that the identification number represents the order in which we collect our responses. We could plot
the residuals and see whether a pattern emerges.

In our example, several variables, including the identification number and each independent
variable, were tried and no consistent pattern was found. We must use the residuals in this analysis,
not the original dependent variable values, because the focus is on the prediction errors, not the rela-
tionship captured in the regression equation.

Normality. The final assumption we will check is normality of the error term of the variate
with a visual examination of the normal probability plots of the residuals.

As shown in Figure 12, the values fall along the diagonal with no substantial or systematic
departures; thus, the residuals are considered to represent a normal distribution. The regression
variate is found to meet the assumption of normality.

Applying Remedies for Assumption Violations. After testing for violations of the four
basic assumptions of multivariate regression for both individual variables and the regression variate,
the researcher should assess the impact of any remedies on the results.
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FIGURE 10 Analysis of Standardized Residuals
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FIGURE 11 Standardized Partial Regression Plots

In an examination of individual variables, the only remedies needed are the transformations
of X6, X7, X12, X13, X16, and X17. A set of differing transformations were used, including the
squared term (X6 and X16), logarithm (X7), cubed term (X13), and inverse (X16). Only in the case
of X12 did the transformation not achieve normality. If we substitute these variables for their
original values and reestimate the regression equation with a stepwise procedure, we achieve
almost identical results. The same variables enter the equation with no substantive differences in either
the estimated coefficients or overall model fit as assessed with R2 and standard error of the estimate.
The independent variables not in the equation still show nonsignificant levels for entry—even
those that were transformed. Thus, in this case, the remedies for violating the assumptions
improved the prediction slightly but did not alter the substantive findings.

IDENTIFYING OUTLIERS AS INFLUENTIAL OBSERVATIONS For our final analysis, we attempt to
identify any observations that are influential (having a disproportionate impact on the regression
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results) and determine whether they should be excluded from the analysis. Although more detailed
procedures are available for identifying outliers as influential observations, we address the use of
residuals in identifying outliers in the following section.

The most basic diagnostic tool involves the residuals and identification of any outliers—that
is, observations not predicted well by the regression equation that have large residuals. Figure 13
shows the studentized residuals for each observation. Because the values correspond to t values,
upper and lower limits can be set once the desired confidence interval has been established. Perhaps
the most widely used level is the 95% confidence interval (α = .05). The corresponding t value is
1.96, thus identifying statistically significant residuals as those with residuals greater than this value
(1.96). Seven observations can be seen in Figure 13 (2, 10, 20, 45, 52, 80, and 99) to have signifi-
cant residuals and thus be classified as outliers. Outliers are important because they are observations
not represented by the regression equation for one or more reasons, any one of which may be an
influential effect on the equation that requires a remedy.

Examination of the residuals also can be done through the partial regression plots (see Figure
11). These plots help to identify influential observations for each independent–dependent variable
relationship. Consistently across each graph in Figure 11, the points at the lower portion are
those observations identified as having high negative residuals (observations 2, 10, 20, 45, 52, 80,
and 99 in Figure 13). These points are not well represented by the relationship and thus affect the
partial correlation as well.

More detailed analyses to ascertain whether any of the observations can be classified
as influential observations, as well as what may be the possible remedies, are discussed
in the supplement to this chapter available on the Web at www.pearsonhighered.com/hair or
www.mvstats.com.

Stage 5: Interpreting the Regression Variate

With the model estimation completed, the regression variate specified, and the diagnostic tests that
confirm the appropriateness of the results administered, we can now examine our predictive equa-
tion based on five independent variables (X6, X7, X9, X11, and X12).

INTERPRETATION OF THE REGRESSION COEFFICIENTS The first task is to evaluate the regression
coefficients for the estimated signs, focusing on those of unexpected direction.
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FIGURE 12 Normal Probability Plot: Standardized Residuals
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The section of Table 11 headed “Variables Entered into the Regression Equation” yields the
prediction equation from the column labeled “Regression Coefficient: B.” From this column, we
read the constant term (-1.151) and the coefficients (.319, .369, .775, -.417, and .174) for X9, X6,
X12, X7, and X11, respectively. The predictive equation would be written

Y = -1.151 + .319X9 + .369X6 + .775X12 + (-.417)X7 + .174X11

Note: The coefficient of X7 is included in parentheses to avoid confusion due to the negative value
of the coefficient.

With this equation, the expected customer satisfaction level for any customer could be calcu-
lated if that customer’s evaluations of HBAT are known. For illustration, let us assume that a cus-
tomer rated HBAT with a value of 6.0 for each of these five measures. The predicted customer
satisfaction level for that customer would be

Predicted Customer = -1.151 + .319 * 6 + .369 * 6 + .775 * 6 + (-.417) * 6 
+ .174 * 6

Satisfaction = -1.151 + 1.914 + 2.214 + 4.650 - 2.502 + 1.044

= 6.169

We first start with an interpretation of the constant. It is statistically significant (significance = .023),
thus making a substantive contribution to the prediction. However, because in our situation it is
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FIGURE 13 Plot of Studentized Residuals
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highly unlikely that any respondent would have zero ratings on all the HBAT perceptions, the con-
stant merely plays a part in the prediction process and provides no insight for interpretation.

In viewing the regression coefficients, the sign is an indication of the relationship (positive or
negative) between the independent and dependent variables. All of the variables except one have
positive coefficients. Of particular note is the reversed sign for X7 (E-Commerce), suggesting that an
increase in perceptions on this variable has a negative impact on predicted customer satisfaction. All
the other variables have positive coefficients, meaning that more positive perceptions of HBAT
(higher values) increase customer satisfaction.

Does X7, then, somehow operate differently from the other variables? In this instance, the
bivariate correlation between X7 and customer satisfaction is positive, indicating that when consid-
ered separately, X7 has a positive relationship with customer satisfaction, just as the other variables.
We will discuss in the following section the impact of multicollinearity on the reversal of signs for
estimated coefficients.

ASSESSING VARIABLE IMPORTANCE In addition to providing a basis for predicting customer
satisfaction, the regression coefficients also provide a means of assessing the relative importance of
the individual variables in the overall prediction of customer satisfaction. When all the variables are
expressed in a standardized scale, then the regression coefficients represent relative importance.
However, in other instances the beta weight is the preferred measure of relative importance.

In this situation, all the variables are expressed on the same scale, but we will use the beta
coefficients for comparison between independent variables. In Table 11, the beta coefficients are
listed in the column headed “Regression Coefficients: Beta.” The researcher can make direct com-
parisons among the variables to determine their relative importance in the regression variate. For
our example, X12 (Salesforce Image) was the most important, followed by X6 (Product Quality), X9

(Complaint Resolution), X7 (E-Commerce), and finally X11 (Product Line). With a steady decline in
size of the beta coefficients across the variables, it is difficult to categorize variables as high, low, or
otherwise. However, viewing the relative magnitudes does indicate that, for example, X12

(Salesforce Image) shows a more marked effect (three times as much) than X11 (Product Line).
Thus, to the extent that salesforce image can be increased uniquely from other perceptions, it repre-
sents the most direct way, ceterus paribus, of increasing customer satisfaction.

MEASURING THE DEGREE AND IMPACT OF MULTICOLLINEARITY In any interpretation of the
regression variate, the researcher must be aware of the impact of multicollinearity. As discussed ear-
lier, highly collinear variables can distort the results substantially or make them quite unstable and
thus not generalizable. Two measures are available for testing the impact of collinearity: (1) calcu-
lating the tolerance and VIF values and (2) using the condition indices and decomposing the
regression coefficient variance (see the supplement to this chapter available on the Web at
www.pearsonhighered.com/hair or www.mvstats.com for more details on this process). The toler-
ance value is 1 minus the proportion of the variable’s variance explained by the other independent
variables. Thus, a high tolerance value indicates little collinearity, and tolerance values approaching
zero indicate that the variable is almost totally accounted for by the other variables (high multi-
collinearity). The variance inflation factor is the reciprocal of the tolerance value; thus we look for
small VIF values as indicative of low correlation among variables.

Diagnosing Multicollinearity. In our example, tolerance values for the variables in the equa-
tion range from .728 (X6) to .347 (X12), indicating a wide range of multicollinearity effects (see
Table 11). Likewise, the VIF values range from 1.373 to 2.701. Even though none of these values
indicate levels of multicollinearity that should seriously distort the regression variate, we must be
careful even with these levels to understand their effects, especially on the stepwise estimation
process. The following section will detail some of these effects on both the estimation and interpre-
tation process.
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