
An Introduction To Programming

Using Visual Basic® 2012
NINTH EDITION

David I. Schneider

Pearson published this exclusive edition for the benefi t

INTERNATIONAL
EDITION

 5.2 Sub Procedures, Part I u 205

 Example 1 Add Numbers The following program calls an expanded version of the Sub
procedure DisplaySum three times. The first time the arguments are literals, the second time the
arguments are variables, and the third time the arguments are expressions. In the second call of
DisplaySum, the values of the variables are passed to the Sub procedure. In the third call, the
expressions are evaluated and the resulting numbers are passed to the Sub procedure.

Private Sub btnAddNumbers_Click(...) Handles btnAddNumbers.Click

 DisplaySum(1, 2)

 Dim x As Double = 3

 Dim y As Double = 4

 DisplaySum(x, y)

 DisplaySum(2 * x, y + 5)

End Sub

Sub DisplaySum(num1 As Double, num2 As Double)

 Dim z As Double

 z = num1 + num2

 lstOutput.Items.Add("The sum of " & num1 & " and " & num2 &

 " is " & z & ".")

End Sub

[Run, and click on the button.]

 Example 2 Population Density The following program passes a string and two num-
bers to a Sub procedure. When the Sub procedure is first called, the string parameter state is
assigned the value “Hawaii”, and the numeric parameters pop and landArea are assigned the val-
ues 1375000 and 6423, respectively. The Sub procedure then uses these parameters to carry out
the task of calculating the population density of Hawaii. The second calling statement assigns
different values to the parameters.

OBJECT PROPERTY SETTING

frmDensities Text Density
btnDisplay Text Display

Demographics
lstDensity

 206 u Chapter 5 General Procedures

Notice that in the calling statement

CalculateDensity(state, pop, landArea)

the variable types have the order String, Double, and Double; the same types and order as in
the Sub procedure header. This order is essential. For instance, the calling statement cannot be
written as

CalculateDensity(pop, landArea, state)

In Example 2 the arguments and parameters have the same name. Using same names some-
times makes a program easier to read. However, arguments and their corresponding parameters
often have different names. What matters is that the order, number, and types of the arguments
and parameters match. For instance, the following code is a valid revision of the btnDisplay_
Click event procedure in Example 2. (Figure 5.18 shows how arguments are passed to parameters
with this code.)

Private Sub btnDisplay_Click(...) Handles btnDisplay.Click

 'Calculate the population densities of states.

 lstDensity.Items.Clear()

 Dim s As String, p As Double, a As Double

Private Sub btnDisplay_Click(...) Handles btnDisplay.Click

 'Calculate the population densities of states

 Dim state As String, pop, landArea As Double

 lstDensity.Items.Clear()

 state = "Hawaii"

 pop = 1375000

 landArea = 6423

 CalculateDensity(state, pop, landArea)

 lstDensity.Items.Add("")

 state = "Alaska"

 pop = 722718

 landArea = 570600

 CalculateDensity(state, pop, landArea)

End Sub

Sub CalculateDensity(state As String, pop As Double, landArea As Double)

 'The density (number of people per square mile)

 'will be displayed rounded to one decimal place.

 Dim density As Double

 density = pop / landArea

 lstDensity.Items.Add("The density of " & state & " is")

 lstDensity.Items.Add(density.ToString("N1") & " people per square mile.")

End Sub

[Run, and then click on the button.]

 5.2 Sub Procedures, Part I u 207

 s = "Hawaii"

 p = 1375000

 a = 6423

 CalculateDensity(s, p, a)

 lstDensity.Items.Add("")

 s = "Alaska"

 p = 722718

 a = 570600

 CalculateDensity(s, p, a)

End Sub

FIGURE 5.18 Passing arguments to a procedure.

arguments

parameters

Sub CalculateDensity(state As String, pop As Double, landArea As Double

CalculateDensity(s, p, a)

n Sub Procedures Having No Parameters

Sub procedures, like Function procedures, are not required to have any parameters. A parameter-
less Sub procedure can be used to give instructions or provide a description of a program.

 Example 3 Population Density The following variation of Example 2 gives the popula-
tion density of a single state. The parameterless Sub procedure DescribeTask gives an explanation
of the program.

Private Sub btnDisplay_Click(...) Handles btnDisplay.Click

 DescribeTask()

 CalculateDensity("Hawaii", 1375000, 6423)

End Sub

Sub DescribeTask()

 lstOutput.Items.Clear()

 lstOutput.Items.Add("This program displays the")

 lstOutput.Items.Add("population density of the last state")

 lstOutput.Items.Add("to become part of the United States.")

End Sub

Sub CalculateDensity(state As String, pop As Double, landArea As Double)

 Dim density As Double

 density = pop / landArea

 lstOutput.Items.Add("") 'insert a blank line

 lstOutput.Items.Add("The density of " & state & " is")

 lstOutput.Items.Add(density.ToString("N1") & " people per square mile.")

End Sub

 208 u Chapter 5 General Procedures

n Sub Procedures Calling Other Sub Procedures

A Sub procedure can call another Sub procedure. If so, after the End Sub statement at the end
of the called Sub procedure is reached, execution continues with the line in the calling Sub
procedure following the calling statement.

 Example 4 Call Sub Procedures In the following program, the Sub procedure FirstPart
calls the Sub procedure SecondPart. After the statements in SecondPart are executed, execution
continues with the remaining statements in the Sub procedure FirstPart before returning to the
event procedure. The form contains a button and a list box.

Private Sub btnDisplay_Click(...) Handles btnDisplay.Click

 'Demonstrate Sub procedure calling other Sub procedures

 FirstPart()

 lstOutput.Items.Add(4 & " from event procedure")

End Sub

Sub FirstPart()

 lstOutput.Items.Add(1 & " from FirstPart")

 SecondPart()

 lstOutput.Items.Add(3 & " from FirstPart")

End Sub

Sub SecondPart()

 lstOutput.Items.Add(2 & " from SecondPart")

End Sub

[Run, and click on the button. The following is displayed in the list box.]

1 from FirstPart

2 from SecondPart

3 from FirstPart

4 from event procedure

[Run, and then click on the button.]

n Comments

 1. Sub procedures allow programmers to focus on the main flow of a complex task and defer
the details of implementation. Modern programs use them liberally. This method of program
construction is known as modular or top-down design. As a rule, a Sub procedure should
perform only one task, or several closely related tasks, and should be kept relatively small.

 5.2 Sub Procedures, Part I u 209

 2. The first line inside a Sub procedure is often a comment statement describing the task
performed by the Sub procedure. If necessary, several comment statements should be used.
Conventional programming practice also recommends that all variables used by the Sub
procedure be listed in comment statements with their meanings. In this text, we give several
examples of this practice, but adhere to it only when the variables are especially numerous
or lack descriptive names.

 3. In Section 5.1, we saw that Word Completion and Parameter Info help us write a func-
tion call. These IntelliSense features provide the same assistance for Sub procedure calls.
(Of course, Word Completion and Parameter Info work only after the Sub procedure has
been created.) See Fig. 5.19.

FIGURE 5.19 The Parameter Info help feature.

Practice Problems 5.2

 1. What is the difference between an event procedure and a Sub procedure?

 2. What is wrong with the following code?

Private Sub btnDisplay_Click(...) Handles btnDisplay.Click

 Dim phone As String

 phone = mtbPhoneNum.Text

 AreaCode(phone)

End Sub

Sub AreaCode()

 txtOutput.Text = "Your area code is " & phone.Substring(0, 3)

End Sub

EXERCISES 5.2

In Exercises 1 through 20, determine the output displayed when the button is clicked.

 1. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
 Piano(88)

End Sub

Sub Piano(num As Integer)

 txtOutput.Text = num & " keys on a piano"

End Sub

 2. Private Sub btnDisplay_Click(...) Handles btnDisplay.Click
 'Opening line of Moby Dick

 FirstLine("Ishmael")

End Sub

