

This page intentionally left blank

216 THE DIGITAL LOGIC LEVEL CHAP. 3

and in 1995, PCI 2.1 came out. PCI 2.2 has features for mobile computers (mostly
for saving battery power). The PCI bus runs at up to 66 MHz and can handle
64-bit transfers, for a total bandwidth of 528 MB/sec. With this kind of capacity,
full-screen, full-motion video is doable (assuming the disk and the rest of the sys-
tem are up to the job). In any event, the PCI bus will not be the bottleneck.

Even though 528 MB/sec sounds pretty fast, the PCI bus still had two prob-
lems. First, it was not good enough for a memory bus. Second, it was not compat-
ible with all those old ISA cards out there. The solution Intel thought of was to de-
sign computers with three or more buses, as shown in Fig. 3-51. Here we see that
the CPU can talk to the main memory on a special memory bus, and that an ISA
bus can be connected to the PCI bus. This arrangement met all requirements, and
as a consequence it was widely used in the 1990s.

ISA
bridge

Modem

Mouse

PCI
bridgeCPU

Main
memory

SCSI USB

Local bus

Sound
card

Printer Available
ISA slot

ISA bus

IDE
disk

Available
PCI slot

Key-
board

Mon-
itor

Graphics
adaptor

Level 2
cache

Cache bus Memory bus

PCI bus

Figure 3-51. Architecture of an early Pentium system. The thicker buses have
more bandwidth than the thinner ones but the figure is not to scale.

Two key components in this architecture are the two bridge chips (which Intel
manufactures—hence its interest in this whole project). The PCI bridge connects
the CPU, memory, and PCI bus. The ISA bridge connects the PCI bus to the ISA
bus and also supports one or two IDE disks. Nearly all PC systems using this ar-
chitecture would have one or more free PCI slots for adding new high-speed
peripherals, and one or more ISA slots for adding low-speed peripherals.

SEC. 3.6 EXAMPLE BUSES 217

The big advantage of the design of Fig. 3-51 is that the CPU has an extremely
high bandwidth to memory using a proprietary memory bus; the PCI bus offers
high bandwidth for fast peripherals such as SCSI disks, graphics adaptors, etc.; and
old ISA cards can still be used. The USB box in the figure refers to the Universal
Serial Bus, which will be discussed later in this chapter.

It would have been nice had there been only one kind of PCI card. Unfortun-
ately, such is not the case. Options are provided for voltage, width, and timing.
Older computers often use 5 volts and newer ones tend to use 3.3 volts, so the PCI
bus supports both. The connectors are the same except for two bits of plastic that
are there to prevent people from inserting a 5-volt card in a 3.3-volt PCI bus or vice
versa. Fortunately, universal cards exist that support both voltages and can plug
into either kind of slot. In addition to the voltage option, cards come in 32-bit and
64-bit versions. The 32-bit cards have 120 pins; the 64-bit cards have the same
120 pins plus an additional 64. A PCI bus system that supports 64-bit cards can
also take 32-bit cards, but the reverse is not true. Finally, PCI buses and cards can
run at either 33 or 66 MHz. The choice is made by having one pin wired either to
the power supply or to ground. The connectors are identical for both speeds.

By the late 1990s, pretty much everyone agreed that the ISA bus was dead, so
new designs excluded it. By then, however, monitor resolution had increased in
some cases to 1600 × 1200 and the demand for full-screen full motion video had
also increased, especially in the context of highly interactive games, so Intel added
yet another bus just to drive the graphics card. This bus was called the AGP bus

(Accelerated Graphics Port bus). The initial version, AGP 1.0, ran at 264
MB/sec, which was defined as 1x. While slower than the PCI bus, it was dedicated
to driving the graphics card. Over the years, newer versions came out, with AGP
3.0 running at 2.1 GB/sec (8x). Today, even the high-performance AGP 3.0 bus
has been usurped by even faster upstarts, in particular, the PCI Express bus, which
can pump an amazing 16 GB/sec of data over high-speed serial bus links. A mod-
ern Core i7 system is illustrated in Fig. 3-52.

In a modern Core i7 based system, a number of interfaces have been integrated
directly into the CPU chip. The two DDR3 memory channels, running at 1333
transactions/sec, connect to main memory and provide an aggregate bandwidth of
10 GB/sec per channel. Also integrated into the CPU is a 16-lane PCI Express
channel, which optimally can be configured into a single 16-bit PCI Express bus or
dual independent 8-bit PCI Express buses. The 16 lanes together provide a band-
width of 16 GB/sec to I/O devices.

The CPU connects to the primary bridge chip, the P67, via the 20-Gb/sec (2.5
GB/sec) serial direct media interface (DMI). The P67 provides interfaces to a num-
ber of modern high-performance I/O interfaces. Eight additional PCI Express lanes
are provided, plus SATA disk interfaces. The P67 also implements 14 USB 2.0 in-
terfaces, 10G Ethernet and an audio interface.

The ICH10 chip provides legacy interface support for old devices. It is con-
nected to the P67 via a slower DMI interface. The ICH10 implements the PCI bus,

218 THE DIGITAL LOGIC LEVEL CHAP. 3

Intel
Core i7

PCI Express 2.0
Graphics

DDR3
1333 MHz

DDR3
1333 MHz

PCI Express 2.0
Graphics (optional)

or

8 lanes

16 lanes

8 lanes

16 GB/s

8 GB/s

8 GB/s

480
Mb/s

each

480
Mb/s

500

Mb/s
each ×1

3
Gb/s
each

Up to
6 Gb/s2

5 Gb/s
each ×1

each

LPC
LCIGLCI

or SPI

SM Bus

2 GB/s DMI

PCIe ×1

DMI
20 Gb/s

PCI Express 2.0
Graphics (optional)

Intel P67
Express
Chipset

Intel High
Definition Audio

Intel High
Definition Audio

Intel Gigabit LAN
Connect

Intel Integrated
10/100/1000 MAC

Intel Integrated
100/1G/10G MAC

Intel Rapid Storage
Technology (optional)

8 PCI Express 2.0

6 PCI Express ×1

12 Hi-Speed USB 2.0 Ports;
Dual EHCI; USB Port Disable

14 Hi-Speed USB 2.0 Ports;
Dual EHCI; USB Port Disable

6 Serial ATA Ports; eSATA;
Port Disable

PCI

BIOS Support

ICH10
ICH10R

6 Serial ATA Ports; eSATA;
Port Disable

Intel Gigabit LAN
Connect

Figure 3-52. The bus structure of a modern Core i7 system.

1G Ethernet, USB ports, and old-style PCI Express and SATA interfaces. Newer
systems may not incorporate the ICH10; it is required only if the system needs to
support legacy interfaces.

PCI Bus Operation

Like all PC buses going back to the original IBM PC, the PCI bus is syn-
chronous. All transactions on the PCI bus are between a master, officially called
the initiator, and a slave, officially called the target. To keep the PCI pin count

SEC. 3.6 EXAMPLE BUSES 219

down, the address and data lines are multiplexed. In this way, only 64 pins are
needed on PCI cards for address plus data signals, even though PCI supports 64-bit
addresses and 64-bit data.

The multiplexed address and data pins work as follows. On a read operation,
during cycle 1, the master puts the address onto the bus. On cycle 2, the master re-
moves the address and the bus is turned around so the slave can use it. On cycle 3,
the slave outputs the data requested. On write operations, the bus does not have to
be turned around because the master puts on both the address and the data. Never-
theless, the minimum transaction is still three cycles. If the slave is not able to re-
spond in three cycles, it can insert wait states. Block transfers of unlimited size are
also allowed, as well as several other kinds of bus cycles.

PCI Bus Arbitration

To use the PCI bus, a device must first acquire it. PCI bus arbitration uses a
centralized bus arbiter, as shown in Fig. 3-53. In most designs, the bus arbiter is
built into one of the bridge chips. Every PCI device has two dedicated lines run-
ning from it to the arbiter. One line, REQ#, is used to request the bus. The other
line, GNT#, is used to receive bus grants. Note: REQ# is PCI-speak for REQ.

PCI
arbiter

PCI
device

R
E

Q
#

G
N

T
#

PCI
device

R
E

Q
#

G
N

T
#

PCI
device

R
E

Q
#

G
N

T
#

PCI
device

R
E

Q
#

G
N

T
#

Figure 3-53. The PCI bus uses a centralized bus arbiter.

To request the bus, a PCI device (including the CPU) asserts REQ# and waits
until it sees its GNT# line asserted by the arbiter. When that event happens, the de-
vice can use the bus on the next cycle. The algorithm used by the arbiter is not de-
fined by the PCI specification. Round-robin arbitration, priority arbitration, and
other schemes are all allowed. Clearly, a good arbiter will be fair, so as not to let
some devices wait forever.

A bus grant is for only one transaction, although the length of this transaction
is theoretically unbounded. If a device wants to run a second transaction and no
other device is requesting the bus, it can go again, although often one idle cycle be-
tween transactions has to be inserted. However, under special circumstances, in

220 THE DIGITAL LOGIC LEVEL CHAP. 3

the absence of competition for the bus, a device can make back-to-back transac-
tions without having to insert an idle cycle. If a bus master is making a very long
transfer and some other device has requested the bus, the arbiter can negate the
GNT# line. The current bus master is expected to monitor the GNT# line, so when it
sees the negation, it must release the bus on the next cycle. This scheme allows
very long transfers (which are efficient) when there is only one candidate bus mas-
ter but still gives fast response to competing devices.

PCI Bus Signals

The PCI bus has a number of mandatory signals, shown in Fig. 3-54(a), and a
number of optional signals, shown in Fig. 3-54(b). The remainder of the 120 or
184 pins are used for power, ground, and related miscellaneous functions and are
not listed here. The Master (initiator) and Slave (target) columns tell who asserts
the signal on a normal transaction. If the signal is asserted by a different device
(e.g., CLK), both columns are left blank.

Let us now look briefly at each of the PCI bus signals. We will start with the
mandatory (32-bit) signals, then move on to the optional (64-bit) signals. The CLK

signal drives the bus. Most of the other signals are synchronous with it. A PCI bus
transaction begins at the falling edge of CLK, which is in the middle of the cycle.

The 32 AD signals are for the address and data (for 32-bit transactions). Gener-
ally, during cycle 1 the address is asserted and during cycle 3 the data are asserted.
The PAR signal is a parity bit for AD. The C/BE# signal is used for two different
things. On cycle 1, it contains the bus command (read 1 word, block read, etc.).
On cycle 2 it contains a bit map of 4 bits, telling which bytes of the 32-bit word are
valid. Using C/BE# it is possible to read or write any 1, 2, or 3 bytes, as well as an
entire word.

The FRAME# signal is asserted by the master to start a bus transaction. It tells
the slave that the address and bus commands are now valid. On a read, usually
IRDY# is asserted at the same time as FRAME#. It says the master is ready to accept
incoming data. On a write, IRDY# is asserted later, when the data are on the bus.

The IDSEL signal relates to the fact that every PCI device must have a 256-byte
configuration space that other devices can read (by asserting IDSEL). This configu-
ration space contains properties of the device. The plug-and-play feature of some
operating systems uses the configuration space to find out what devices are on the
bus.

Now we come to signals asserted by the slave. The first of these, DEVSEL#,
announces that the slave has detected its address on the AD lines and is prepared to
engage in the transaction. If DEVSEL# is not asserted within a certain time limit,
the master times out and assumes the device addressed is either absent or broken.

The second slave signal is TRDY#, which the slave asserts on reads to announce
that the data are on the AD lines and on writes to announce that it is prepared to
accept data.

